Advertisement

Disulfide Bonds: Key to Wheat Protein Functionality

  • F. R. Huebner
  • J. A. Bietz
  • J. S. Wall
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)

Abstract

Disulfide bonds in wheat proteins are major factors that determine the properties of the proteins and their functionality in wheat flour. The gliadin proteins contain mostly intramolecular disulfide bonds. in contrast, the high-molecular-weight glutenins are formed by disulfide linkages of several diverse polypeptide chains which have been separated and characterized. The linkage of these proteins in a fairly linear array contributes to the unique viscoelastic properties of glutenin. The glutenin has been separated into two fractions differing in molecular weight. the amount of highest molecular weight component is correlated with the rheological behavior of the flours from different wheat varieties. Various oxidizing and reducing agents are widely used to alter the functional behavior of wheat proteins by the action on sulfhydryl and disulfide groups.

Keywords

Disulfide Bond Bread Wheat Wheat Flour Mercuric Chloride Glutenin Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen, C. (1962). The tertiary structure of ribonuclease. Brookhaven Symp. Biol., 15, 184.PubMedGoogle Scholar
  2. Archer, M. J. (1972). Relationship between free glutathione content and quality assessment parameters of wheat cultivars. J. Sci. Food Agric., 23, 485–491.CrossRefGoogle Scholar
  3. Beckwith, A. C., Wall, J. S. and Jordan, R. W. (1965). Reversible reduction and reoxidation of the disulfide bonds in wheat gliadin. Arch. Biochem. Biophys., 112, 16–24.PubMedCrossRefGoogle Scholar
  4. Beckwith, A. C. and Wall, J. S. (1966). Reduction and reoxidation of wheat glutenin. Biochim. Biophys. Acta, 130, 155–162.CrossRefGoogle Scholar
  5. Beckwith, A. C., Nielsen, H. C., Wall, J. S. and Huebner, F. R. (1966). Isolation and characterization of a high-molecular weight protein from wheat gliadin. Cereal Chem., 43, 14–28.Google Scholar
  6. Bietz, J. A. and Wall, J. S. (1972). Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chem., 49, 416–430.Google Scholar
  7. Bietz, J. A. and Wall, J. S. (1973). Isolation and characterization of gliadin-like subunits from glutenin. Cereal Chem., 50, 537–547.Google Scholar
  8. Bietz, J. A., Huebner, F. R. and Wall, J. S. (1973). Glutenin: The strength protein of wheat flour. Bakers Dig., 47, 26–35, 67.Google Scholar
  9. Bietz, J. A. and Wall, J. S. (1975). The effect of various extractants on the subunit composition and associations of wheat glutenin. Cereal Chem., 52, 145–155.Google Scholar
  10. Bietz, J. A., Shepherd, K. W. and Wall, J. S. (1975). Single-kernel analysis of glutenin: Use in wheat genetics and breeding. Cereal Chem., 52, 513–532.Google Scholar
  11. Booth, M. R. and Ewart, J. A. D. [1969). Studies on four components of wheat gliadins. Biochim. Biophys. Acta, 181, 226–233.Google Scholar
  12. Bushuk, W. and Wrigley, C. W. (1971). Glutenin in developing wheat grain. Cereal Chem., 48, 448–455.Google Scholar
  13. Bushuk, W. (1974). Glutenin: Functions, properties and genetics. Bakers Dig., 48(4), 14–22.Google Scholar
  14. Charbonnier, L. (1971). Fractionnement de l’ω-gliadine sur sulfoethylcellulose. C. R. Acad. Sci. Paris, t.272, 709–712.Google Scholar
  15. Cluskey, J. E. and Dimler, R. J. (1967). Characterization of the acetic acid-insoluble fraction of wheat gluten protein. Cereal Chem., 44, 611–619.Google Scholar
  16. Cole, E. G, and Mecham, D. K. (1966). Cyanate formation and electrophoretic behavior of proteins in gels containing urea. Anal. Biochem., 14, 215–222.PubMedCrossRefGoogle Scholar
  17. Danno, G., Kanazawa, K. and Natake, M. (1975). Cleavage of disulfide bonds of wheat glutenin by mercuric chloride. Agric. Biol. Chem., 39, 1379–1384.CrossRefGoogle Scholar
  18. Friedman, M., Krull, H. and Cavins, J. F. (1970). The chromatographic determination of cystine and cysteine residues in proteins as S-β-(4 pyridylethyl) cysteine. J. Biol. Chem., 245, 3868–3871.PubMedGoogle Scholar
  19. Goldstein, S. (1957). Sulfhydryl-und disulfidgruppen der klebereiweisse und ihre beziehung zur backfahigkeit der brotmehle. Mitt. Lebensm. Hyg. Bern., 48, 87.Google Scholar
  20. Hamauzu, Z., Kamazuka, Y., Kanazawa, H. and Yonezawa, D. (1975). Molecular weight determination of component polypeptides of glutenin after fractionation by gel filtration. Agric. Biol. Chem., 39, 1527–1531.CrossRefGoogle Scholar
  21. Henika, R. G. and Rodgers, N. E. (1965). Reactions of cysteine, bromate and whey in a rapid breadmaking process. Cereal Chem., 42, 397–408.Google Scholar
  22. Huebner, F. R. and Wall, J. S. (1966). Improved chromatographic separation of gliadin proteins on sulfoethyl cellulose. Cereal Chem., 43, 325–335.Google Scholar
  23. Huebner, F. R., Rothfus, J. A. and Wall, J. S. (1967). Isolation and chemical comparison of different γ-gliadins from hard red winter wheat flour. Cereal Chem., 44, 221–229.Google Scholar
  24. Huebner, F. R. and Rothfus, J. A. (1968). Gliadin proteins from different varieties of wheats. Cereal Chem., 45, 242–253.Google Scholar
  25. Huebner, F. R. (1970). Comparative studies on glutenins from different classes of wheat. Agric. Food Chem., 18, 256–259.CrossRefGoogle Scholar
  26. Huebner, F. R. and Rothfus, J. A. (1971). Evidence for glutenin in wheat: Stability toward dissociating forces. Cereal Chem., 48, 469–478.Google Scholar
  27. Huebner, F. R. and Wall, J. S. (1974). Wheat glutenin subunits. I. Preparative separation by gel-filtration and ion-exchange chromatography. Cereal Chem., 51, 228–239.Google Scholar
  28. Huebner, F. R., Donaldson, G. L. and Wall, J. S. (1974). Wheat glutenin subunits. II. Compositional differences. Cereal Chem., 51, 240–249.Google Scholar
  29. Huebner, F. R. and Wall, J. S. (1976). Fractionation and quantitative differences of glutenin from wheat varieties varying in baking quality. Cereal Chem., 53, 258–269.Google Scholar
  30. Jennings, A. C., Morton, R. K. and Polk, B. A. (1963). Cytological studies of protein bodies of developing wheat endosperm. Aust. J. Biol. Sci., 16, 366–374.Google Scholar
  31. Jones, R. W., Taylor, N. W. and Senti, F. R. (1959). Electrophoresis and fractionation of wheat gluten. Arch. Biochem. Biophys., 84, 363–367.PubMedCrossRefGoogle Scholar
  32. Kent-Jones, D. W. (1939). Modern Cereal Chemistry. 3rd ed. The Northern Publishing Co.Google Scholar
  33. Krull, L. H. and Wall, J. S. (1969). Relationship of amino acid composition and wheat protein properties. Bakers Dig., 43(4), 30–39.Google Scholar
  34. Mecham, D. K., Cole, E. W. and Ng, H. (1972). Solubilizing effect of mercuric chloride on the “gel” protein of wheat flour. Cereal Chem., 49, 62–67.Google Scholar
  35. Meredith, O. B. and Wren, J. J. (1966). Determination of molecular weight distribution in wheat flour proteins by extraction and gel filtration in a dissociating medium. Cereal Chem., 43, 169–186.Google Scholar
  36. Nielsen, H. C., Beckwith, A. C. and Wall, J. S. (1968). Effect of disulfide-bond cleavage on wheat gliadin fractions obtained by gel filtration. Cereal Chem., 45, 37–47.Google Scholar
  37. Orth, R. A. and Bushuk, W. (1972). A comparative study of the proteins of wheats of diverse baking qualities. Cereal Chem., 49, 268–275.Google Scholar
  38. Orth, R. A., Drohzek, B. L. and Bushuk, W. (1973). Studies of glutenin. IV. Microscopic structure and its relations to breadmaking quality. Cereal Chem., 50, 688–696.Google Scholar
  39. Osborne, T. B. (1907). The proteins of the wheat kernel. Carnegie Institution, Washington, D.C.CrossRefGoogle Scholar
  40. Pence, J. W. and Olcott, H. S. (1952). Effect of reducing agents on gluten proteins. Cereal Chem., 29, 292–298.Google Scholar
  41. Rothfus, J. A. and Crow, M. J. A. (1968). Aminoethylation and fractionation of glutenin. Evidence of differences from gliadin. Biochim. Biophys. Acta, 160, 404–412.PubMedGoogle Scholar
  42. Sexson, K. R. and Wu, Y. V. (1972). Molecular weights of wheat γ1-and γ3-gliadins in various solvents. Biochim. Biophys. Acta, 263, 651–657.PubMedGoogle Scholar
  43. Simmonds, D. H. (1971). Morphological and molecular aspects of wheat quality. Wallerstein Lab. Commun., 34, 17–31.Google Scholar
  44. Sullivan, B., Howe, M., Schmalz, F. D. and Astleford, G. R. (1940). The action of oxidizing and reducing agents on flour. Cereal Chem., 17, 507–528.Google Scholar
  45. Tsen, C. C. (1967). Changes in flour proteins during dough mixing. Cereal Chem., 44, 308–317.Google Scholar
  46. Tsen, C. C. and Bushuk, W. (1968). Reactive and total sulfhydryl and disulfide contents of flours of different mixing properties. Cereal Chem., 45, 58–65.Google Scholar
  47. Woychik, J. H., Boundy, J. A. and Dimler, R. J. (1961). Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch. Biochem. Biophys., 94, 477–482.PubMedCrossRefGoogle Scholar
  48. Woychik, J. H., Huebner, F. R. and Dimler, R. J. (1964). Reduction and starch-gel electrophoresis of wheat gliadin and glutenin. Arch. Biochem. Biophys., 105, 151–155.PubMedCrossRefGoogle Scholar
  49. Woychik, J. H. and Huebner, F. R. (1966). Isolation and partial characterization of wheat γ-gliadin. Biochim. Biophys. Acta, 127, 88–93.Google Scholar
  50. Wu, Y. V., Cluskey, J. E. and Sexson, K. R. (1967). Effect of ionic strength on the molecular weight and conformation of wheat gluten proteins in 3M urea solutions. Biochim. Biophys. Acta, 133, 83–90.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • F. R. Huebner
    • 1
  • J. A. Bietz
    • 1
  • J. S. Wall
    • 1
  1. 1.Northern Regional Research CenterAgricultural Research Service U.S. Department of AgriculturePeoriaUSA

Personalised recommendations