Advertisement

Gas-Liquid Chromatography and Mass Spectrometry of Lanthionine, Lysinoalanine, and S-Carboxyethylcysteine

  • Munenori Sakamoto
  • Fumitaka Nakayama
  • Koh-Ichi Kajiyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)

Abstract

A programmed-temperature gas-liquid chromatographic method of analysis of amino acids as their n-butyl esters of N(O)-trifluoro-acetyl derivatives with a dual column system using OV-17 and Dexsil 300 GC as stationary phase is discussed. The method is particularly suitable for analysis of chemically modified amino acids in the hydrolyzates of chemically modified wool and other protein fibers. Combined gas-liquid chromatography-mass spectrometry is used to identify unequivocally the molecular structure of modified amino acids. Lanthionine, lysinoalanine, and S-(2-carboxyethyl)-cysteine in the hydrolyzates of chemically modified wool fibers can be quantitatively analyzed by the gas-liquid chromatographic method on Dexsil 300 GC. N(ε)-(2-Carboxyethyl)lysine was detected by the combined gas-liquid chromatography-mass spectrometry in the hydrolyzate of reduced wool treated with acrylonitrile.

Keywords

Retention Index Protein Amino Acid Wool Fiber Protein Fiber Modify Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amico, V., Oriente, G. and Tringali, C. (1976). Quantitative Gas-Liquid Chromatography of Non-Protein Amino Acids. J. Chromatogr., 116, 439–444.PubMedCrossRefGoogle Scholar
  2. Asquith, R. S. and García-Domínguez, J. J. (1968). Crosslinking Reactions Occurring in Keratin under Alkaline Conditions. J. Soc. Dyers Colourists, 84, 211–216.CrossRefGoogle Scholar
  3. Asquith, R. S. and Carthew, P. (1973). The Competitive Addition Reaction of Dehydroalanine Residues Formed during the Alkaline Degradation of Wool Cystine. J. Text. Inst., 64, 10–20.CrossRefGoogle Scholar
  4. Blackburn, S. and Lee, G. R. (1954). Chromatographic Separation of the Diastereoisomerides of Lanthionine. Chemistry and Industry, 1252.Google Scholar
  5. Cavins, J. F. and Friedman, M. (1967). New Amino Acids Derived from Reactions of ε-Amino Groups in Proteins with α,β-Unsaturated Compounds. Biochem., 6, 3766–3770.CrossRefGoogle Scholar
  6. Cliffe, A. J., Berridge, N. J. and Westgarth, D. R. (1973). Determination of Some Amino Acids by Gas Chromatography of Derivatives. J. Chromatogr., 78, 333–341.Google Scholar
  7. Cuthbertson, W. R. and Phillips, H. (1945). The Action of Alkalis on Wool. 1. The Subdivision of the Combined Cystine into Two Fractions Differing in Their Rate and Mode of Reaction with Alkalis. Biochem. J., 39, 7–17.PubMedGoogle Scholar
  8. Decroix, G. and Mazingue, G. (1958). Séparation Chromatographique et Dosage dans la Laine de la Lanthionine à l’Étal de Lanthionine Sulfoxyd. Bull. Inst. Text. France, 73, 41–52.Google Scholar
  9. Dowling, L. M. and Crewther, W. G. (1964). Determination of Lanthionine in Protein Hydrolysates. Anal. Biochem., 8, 244–256.PubMedCrossRefGoogle Scholar
  10. Felker, P. and Bandursky, R. S. (1975). Quantitative Gas-Liquid Chromatography and Mass Spectrometry of the N(O)-Perfluoro-butyryl-O-Isoamyl Derivatives of Amino Acids. Anal. Biochem., 67, 245–262.PubMedCrossRefGoogle Scholar
  11. Gehrke, C. W., Roach, D., Zumwalt, R. W., Stalling, D. L. and Wall, L. L. (1968). “Quantitative Gas-Liquid Chromatography of Amino Acids in Proteins and Biological Substances.” Analytical Biochemistry Laboratories Inc., Columbia, Mo., U. S. A.Google Scholar
  12. Gehrke, C. W., Zumwalt, R. W. and Kuo, K. (1971). Quantitative Amino Acid Analysis by Gas Chromatography. J. Agr. Food Chem., 19, 605–618.CrossRefGoogle Scholar
  13. Gehrke, C. W. (1972). Quantitative-Micro Gas-Liquid Chromatography. J. Assoc. Off. Anal. Chemists, 55, 449–457.Google Scholar
  14. Gehrke, C. W. and Takeda, H. (1973). Gas Liquid Chromatographic Studies on the Twenty Protein Amino Acids: A Single Column Separation. J. Chromatogr., 76, 63–75.PubMedCrossRefGoogle Scholar
  15. Gelpi, E., Koenig, W. A., Gilbert, J. and Oró, J. (1969). Combined Gas Chromatography-Mass Spectrometry of Amino Acid Derivatives. J. Chromatogr. Sci., 7, 607–613.Google Scholar
  16. Horn, M. J., Jones, D. B. and Ringel, S. J. (1941). Isolation of a New Sulfur-Containing Amino Acid (Lanthionine) from Sodium Carbonate-Treated Wool. J. Biochem., 138, 141–149.Google Scholar
  17. Husek, P. and Kacek, K. (1975). Gas Chromatography of Amino Acids. J. Chromatogr., 113, 139–230.PubMedCrossRefGoogle Scholar
  18. Islam, A. and Darbre, A. (1972). Gas-Liquid Chromatography of Trifluoroacetylated Amino Acid Methyl Esters: Determination of Their Molar Responses with the Flame Ionization Detector. J. Chromatogr., 71, 223–232.PubMedCrossRefGoogle Scholar
  19. Kaiser, F. E., Gehrke, C. W., Zumwalt, R. W. and Kuo, K. C. (1974). Amino Acid Analysis. Hydrolysis, Ion-exchange Clean-Up, Derivatization, and Quantitation by Gas-Liquid Chromatography. J. Chromatogr., 94, 113–133.PubMedCrossRefGoogle Scholar
  20. Kovats, E. (1958). Gas-Chromatographische Charakterisierung Organischer Verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta., 41, 1915–1932.CrossRefGoogle Scholar
  21. Lamkin, W. M. and Gehrke, C. W. (1965). Quantitative Gas Chromatography of Amino Acids: Preparation of n-Butyl N-Trifluoroacetyl Esters. Anal. Chem., 37, 383–389.PubMedCrossRefGoogle Scholar
  22. Lawless, J. G. and Chadha, M. S. (1971). Mass Spectral Analysis of C3 and C4 Aliphatic Amino Acid Derivatives. Anal.Biochem., 44, 473–485.PubMedCrossRefGoogle Scholar
  23. Mackenzie, S. L. and Tenaschuk, D. (1974). Gas-Liquid Chromatography of N-Heptabutyryl Isobutyl Esters of Amino Acids. J. Chromatogr., 97, 19–24.PubMedCrossRefGoogle Scholar
  24. March, J. F. (1975). A Modified Technique for the Quantitative Analysis of Amino Acids by Gas Chromatography Using Hepta-fluorobutyric n-Propyl Derivatives. Anal. Biochem., 69, 420–442.PubMedCrossRefGoogle Scholar
  25. Miró, P. and García-Domínguez, J. J. (1966a). Bestimmung von Lanthionin in Wollhydrolysaten. Melliand Textilber., 47, 68–72.Google Scholar
  26. Miró, P. and Garcia-Dominguez, J. J. (1966b). Bestimmung von Lysinoalanine in Hydrolysaten von Wolle nach Hitze-und Alkalinenbehandlung. Melliand Textilber., 47, 676–680.Google Scholar
  27. Miró, P. and García-Domínguez, J. J. (1967). Action of Nucleo-phylic Reagents on Wool. J. Soc. Dyers Colourists, 83, 91–95.Google Scholar
  28. Miró, P. and Garcia-Dominguez, J. J. (1968). Action of Nucleo-phylic Reagents on Wool II. Action of Sodium Sulfite at pH 8.6. J. Soc. Dyers Colourists, 84, 310–313.CrossRefGoogle Scholar
  29. Miro, P. and García-Domínguez, J. J. (1973). Action of Ammonium and Sodium Hydroxides on Keratin Fibers in Relation to Their Morphological Structure. J. Soc. Dyers Colourists, 89, 137–140.CrossRefGoogle Scholar
  30. Moss, C. W., Lambert, M. A. and Diaz, F. J. (1971). Gas-Liquid Chromatography of Twenty Protein Amino Acids on a Single Column. J. Chromatogr., 60, 134–136.PubMedCrossRefGoogle Scholar
  31. Raulin, F., Shapshak, P. and Khare, B. N. (1972). Quantitative Gas-Liquid Chromatography of Non-Protein Amino Acids in the Presence of the Twenty Protein Amino Acids. J. Chromatogr., 73, 35–41.PubMedCrossRefGoogle Scholar
  32. Riehm, J. P. and Scheraga, H. A. (1966). Structural Studies of Ribonuclease. XX. Acrylonitrile. A Reagent for Blocking Amino Groups of Lysine Residues in Ribonuclease. Biochem., 5, 93–99.CrossRefGoogle Scholar
  33. Robson, A., Williams, M. J. and Woodhouse, J. M. (1969). The Formation of Lysinoalanine and Lanthionine in Wool Fibers Stretched in Boiling Water, and Their Relation to Permanent Set. J. Text. Inst., 60, 140–151.CrossRefGoogle Scholar
  34. Sakamoto, M. Kajiyama, K.-I. and Tonami, H. (1974). Gas-Liquid Chromatographic Behaviours of N-Trifluoroacetyl n-Butyl Esters of Various S-Substituted Cysteines. J. Chromatogr., 94, 189–207.CrossRefGoogle Scholar
  35. Sakamoto, M., Kajiyama, K.-I., Teshirogi, T. and Tonami, H. (1975a). Determination of Lanthionine and Lysinoalanine as N-Trifluoroacetyl n-Butyl Esters by Gas-Liquid Chromatography. Text. Res. J., 45, 145–154.CrossRefGoogle Scholar
  36. Sakamoto, M., Kajiyama, K.-I., Shiozaki, H. and Tanaka, Y. (1975b). Gas Chromatographic Analysis of Artifact Amino Acids in Silk and Wool Treated with Alkylene Oxides. (in Japanese). Sen-i Gakkaishi, 31, T158-T168.Google Scholar
  37. Sakamoto, M., Kajiyama, K.-I., Iwata, M. and Tonami, H. (1975c). Reaction of Wool with Potassium Cyanide. Presented at the 5th Internat. Wool Text. Res. Conf. Aachen, 1975; to be published as special issues of ‘Schriftenreihe Deutsches Wollforschungsinstitut an der Technischen Hochschule Aachen’, 1976.Google Scholar
  38. Sakamoto, M., Kajiyama, K.-I., Sato, Y. and Nakayama, F. (1975d). Gas Chromatography of Artifact Amino Acids for Chemically Modified Wool Fibers. Presented at the 5th Internat. Wool Text. Res. Conf. Aachen, 1975; to be published as special issues of ‘Schriftenreihe Deutsches Wollforschunsinstitut an der Technischen Hochschule Aachen’, 1976.Google Scholar
  39. Sakamoto, M., Kajiyama, K.-I., Shiozaki, H. and Tanaka, Y. (1976a). Gas Chromatographic Analysis of Silk and Wool Treated with Aryl Glycidyl Ethers. (in Japanese). Sen-i Gakkaishi, 32, T335-T339.Google Scholar
  40. Sakamoto, M. and Nakayama, F. (1976b). Gas Chromatography-Mass Spectrometry of Epoxide-Treated Wool, (in Japanese). Preprint, Annual Meeting of Soc. Fiber Sci. Technol., Japan, June 16–18, Tokyo, pp 36.Google Scholar
  41. Zacharius, R. M. and Talley, E. A. (1962). Elution Behavior of Naturally Occurring Ninhydrin-Positive Compounds during Ion Exchange Chromatography. Anal. Chem., 34, 1551–1556.CrossRefGoogle Scholar
  42. Zanetta, J. P. and Vincendon, G. (1973). Gas-Liquid Chromatography of N(O)-Heptafluorobutyrates of Isoarnyl Esters of Amino Acids. J. Chromatogr., 76, 91–99.PubMedCrossRefGoogle Scholar
  43. Ziegler, K. (1964). New Cross-Links in Alkali-Treated Wool. J. Biol. Chem., 239, 2713–2714.Google Scholar
  44. Ziegler, K. (1965). The Influence of Alkali Treatment on Wool. Proc. 3rd Internat. Wool Text. Res. Conf. Paris (CIETEL), 2, 403–471.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Munenori Sakamoto
    • 1
  • Fumitaka Nakayama
    • 1
  • Koh-Ichi Kajiyama
    • 1
  1. 1.Department of Textile and Polymeric MaterialsTokyo Institute of TechnologyO-okayama, Meguro-ku, TokyoJapan

Personalised recommendations