Electron Microscopy of an Oligomeric Protein Stabilized by Polyfunctional Cross-Linking

  • C. N. Gordon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)

Abstract

Oligomeric proteins can be intramolecularly cross-linked with polylysine in a reaction in which a water soluble carbodiimide mediates an amide linkage between the protein carboxyl groups and the ε-amino groups of polylysine. Studies carried out with a cytochrome P-450 indicate that a small number of molecules in a population which has been cross-linked in this way retain important features of their tertiary and quaternary structure when negatively stained and examined in the electron microscope. Use of the method in determining the subunit geometry of oligomeric proteins is discussed.

Keywords

Cholesterol Amide Aldehyde Electrophoresis Adduct 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cottam, G. L., Hollenberg, P. F. and Coon, M. J. (1969). Subunit structure of rabbit muscle pyruvate kinase. J. Biol. Chem., 244, 1481.PubMedGoogle Scholar
  2. Davies, G. E. and Stark, G. R. (1970). Use of dimethyl suberimidate, a cross-linking reagent in studying the subunit structure of oligomeric proteins. Proc. Nat. Acad. Sci., U.S.A., 66, 651.CrossRefGoogle Scholar
  3. Gordon, C. N., Shikita, M. and Hall, P. F. (1974). The use of a novel cross-linking method in demonstrating the subunit structure of an oligomeric protein by negative staining. J. Ultras true. Res., 47, 285.CrossRefGoogle Scholar
  4. Haschemeyer, R. H. and de Harven. (1974). Electron microscopy of enzymes. Ann. Rev. Biochem., 43, 279.PubMedCrossRefGoogle Scholar
  5. Haschemeyer, R. H. and Myers, R. J. (1972). Negative staining. In “Principles and Techniques of Electron Microscopy”, Vol. 2, Van Nostrand Reinhold Co., New York, N. Y.Google Scholar
  6. Hassel, J. and Hand, A. R. (1974). Tissue fixation with diimido-esters as an alternative to aldehydes. J. Histochem. Cyto-chem., 22, 223.CrossRefGoogle Scholar
  7. Hayat, M. A. (1970). “Principles and Techniques of Electron Microscopy”, Vol. 1, Van Nostrand Reinhold Co., New York, N. Y.Google Scholar
  8. Hoare, D. G. and Koshland, D. E., Jr. (1967). A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J. Biol. Chem., 242, 2447.PubMedGoogle Scholar
  9. Klotz, I. M. and Langerman, N. R. (1970). Quaternary structure of proteins. Ann. Rev. Biochem., 39, 25.PubMedCrossRefGoogle Scholar
  10. Korn, A. H., Feairheller, S. H. and Filachione, E. M. (1972). Glutaraldehyde: nature of the reagent. J. Mol. Biol. 65, 525.PubMedCrossRefGoogle Scholar
  11. Myers, J. S. and Hardman, J. K. (1971). Formaldehyde-induced cross-linkages in the a subunit of the Escherichia coli tryptophan synthetase. J. Biol. Chem., 246, 3863.PubMedGoogle Scholar
  12. Shikita, M. and Hall, P. F. (1973). Cytochrome P-450 from bovine adrenocortical mitochondria: an enzyme for the side chain cleavage of cholesterol. II. Subunit structure. J. Biol. Chem., 248, 5605.PubMedGoogle Scholar
  13. Valentine, R. C., Shapiro, B. M. and Stadtman, E. R. (1968). Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry, 7, 2143.PubMedCrossRefGoogle Scholar
  14. Weber, K., Pringle, J. R. and Osborn, M. (1972). Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol., 26, 3.PubMedCrossRefGoogle Scholar
  15. Wilcox, P.E. (1967). Esterification. Methods Enzymol., 11, 605.CrossRefGoogle Scholar
  16. Wold, F. (1972). Bifunctional reagents. Methods Enzymol., 25, 623.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • C. N. Gordon
    • 1
  1. 1.Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations