Advertisement

Cross-Linking of Amino Acids by Formaldehyde. Preparation and 13C NMR Spectra of Model Compounds

  • David P. Kelly
  • M. K. Dewar
  • R. B. Johns
  • Shao Wei-Let
  • J. F. Yates
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)

Abstract

Model cross-linked systems have been prepared by reacting amino acids or alkylamines with formaldehyde and various amino acid model compounds such as 2,4-dimethylphenol (tyrosine), 3-methylindole (tryptophan) and alkylamides (glutamine, asparagine. 13C NMR spectra of the products show the resonances of the formaldehyde-derived methylene carbons in the region 45-60 ppm. Interferences occur from resonances of the α-amino acid methine carbons. From the data for these products and other model compounds it has been possible to predict the shifts of the residual methylene carbons in a variety of cross-linked systems. This NMR technique shows promise as a rapid non-degradative method for identification of cross-linking sites.

Keywords

Model Compound Methylene Carbon Methine Carbon Treated Wool React Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blass, J., Bizzini, B., and Raynaud, M. (1967). Bull. Soc. Chim. Fr., 3957.Google Scholar
  2. Blass, J., Bizzini, B., and Raynaud, M. (1968). Ann. Inst. Pasteur, Paris, 115, 881.Google Scholar
  3. Bowes, J.H., Cater, C.W., and Ellis, M.J. (1965). J. Amer. Leather Chem. Ass., 60, 275.Google Scholar
  4. Burke, W.J. (1949). J. Amer. Chem. Soc., 71, 609.CrossRefGoogle Scholar
  5. Caldwell, J.B. and Milligan, B. (1972). Text. Res. J., 42, 122.CrossRefGoogle Scholar
  6. Dewar, M.K., Johns, R.B., Kelly, D.P., and Yates, J.F. (1974). Aust. J. Chem., 28, 917.CrossRefGoogle Scholar
  7. Eggert, H., and Djerassi C. (1973). J. Amer. Chem. Soc., 95, 3710.CrossRefGoogle Scholar
  8. Evans, R.F. (1967). Aust. J. Chem., 20, 1643.CrossRefGoogle Scholar
  9. Feairheller, S.H., Taylor, M.M., Gruber, H.A., Mellon, E.F., and Filachione, E.M. (1967). Amer.Chem.Soc., Div.Polym.Chem.Prepr., 8, 775.Google Scholar
  10. Fraenkel-Conrat, H., Cooper, M., and Olcott, H.S. (1945). J.Amer.Chem.Soc., 67, 950.CrossRefGoogle Scholar
  11. Fraenkel-Conrat, H., Brandon, B.A. and Olcott, H.S. (1947). J.Biol.Chem., 168, 99.PubMedGoogle Scholar
  12. Fraenkel-Conrat, H., and Olcott, H.S. (1948). J.Biol.Chem., 174, 827.PubMedGoogle Scholar
  13. Gaines, J.R., and Swanson, A.W. (1971). J.Heterocycl.Chem., 8, 249.CrossRefGoogle Scholar
  14. Gruen, L.C., and Nicholls, P.W. (1969). Aust.J.Chem., 22, 2137.CrossRefGoogle Scholar
  15. Jacobs, W.A., and Craig, L.C. (1936). J.Biol.Chem., 113, 759.Google Scholar
  16. Johnson, L.F., and Jankowski, W.C. (1972). “Carbon-13 N.M.R. Spectra”, Wiley-Interscience, New York, N.Y.Google Scholar
  17. Neuberger, A. (1944). Biochem.J., 38, 309.PubMedGoogle Scholar
  18. Ratner, S., and Clarke, M.T. (1937). J.Amer.Chem.Soc., 59, 210.CrossRefGoogle Scholar
  19. Roberts, G.C.K., and Jardetzky, O. (1970). Advan.Protein Chem., 24, 449.Google Scholar
  20. Shao Wei-Let (1970). Ph.D. thesis, University of Melbourne.Google Scholar
  21. Stammer, C.H. (1961). J.Org.Chem., 26, 2556.CrossRefGoogle Scholar
  22. Trézl, L., Heiszman, J., and Tyihak, E. (1976). ‘Proc.Int.Wool Text.Res.Conf., 5th, Aachen 1975’ in “Schriftenr.Dtsch. Wollforsch.Inst.Tech.Hochschule Aachen”, in press.Google Scholar
  23. Walker, J.F. (1964). “Formaldehyde”, Reinhold, New York, N.Y.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • David P. Kelly
    • 1
  • M. K. Dewar
    • 1
  • R. B. Johns
    • 1
  • Shao Wei-Let
    • 1
  • J. F. Yates
    • 1
  1. 1.Department of Organic ChemistryUniversity of MelbourneParkvilleAustralia

Personalised recommendations