Physical and Chemical Consequences of Keratin Crosslinking, with Application to the Determination of Crosslink Density

  • Emory Menefee
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)


The high levels of covalent disulfide crosslinking in keratins strongly affect (1) structural stability, (2) viscoelasticity, and (3) chemical reactivity. This paper briefly reviews recent work on these subjects, with critical emphasis on methods by which chemical and physical properties can be related to inter- and intra-molecular crosslink density in heterogeneous systems like keratins. Detailed attention is drawn to effects of crosslinking on the hydrolysis of keratin by acids or enzymes. Within the limits of reasonable assumptions, it is possible to account quantitatively for crosslink dependent variations in the hydrolysis rate of different keratins, and also to derive a formula for calculating the absolute intermolecular crosslink density from the amount of keratin dissolved after partial hydrolysis and the number of chain ends appearing in the soluble fraction.


Crosslink Density Human Hair CROSSLINK Density Wool Fiber Wool Textile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, L. D. and Feughelman, M. (1969a). The torsional properties of normal and sulfur-enriched wool fibers. I. Modulus of rigidity and torsional relaxation of wet and dry fibers at 20°C. Text. Res. J., 39, 261–266.Google Scholar
  2. Armstrong, L. D. and Feughelman, M. (1969b). The torsional properties of normal and sulfur-enriched wool fibers. II. Modulus of rigidity and torsional relaxation of fibers in water at temperatures between 20°C and 85°C. Text. Res. J., 39, 267–272.Google Scholar
  3. Asquith, R. S. and García-Domínguez, J. J. (1968a). New amino acids in alkali treated wool. J. Soc. Dyers Col., 84, 155–158.CrossRefGoogle Scholar
  4. Asquith, R. S. and García-Domínguez, J. J. (1968b). Crosslinking reactions occurring in keratin under alkaline conditions. J. Soc. Dyers Col., 84, 211–216.CrossRefGoogle Scholar
  5. Asquith, R. S. and Otterburn, M. S. (1970). Self crosslinking in heated keratin. J. Text. Inst., 61, 569–577.CrossRefGoogle Scholar
  6. Asquith, R. S. and Otterburn, M. S. (1971). Self crosslinking in keratin under the influence of dry heat. Appl. Polymer Symp., 18, 277–281.Google Scholar
  7. Asquith, R. S. and Puri, A. K. (1970). The formation of mixed disulfides by the action of thioglycollic acid on wool cystine and its relationship to wool setting. Text. Res. J., 40, 273–280.CrossRefGoogle Scholar
  8. Baden, H. P., Goldsmith, L. A. and Fleming, B. (1973). A comparative study of the physicochemical properties of human keratinized tissues. Biochim. Biophys. Acta, 322, 269–278.PubMedGoogle Scholar
  9. Beevers, R. B. and McLaren, K. G. (1974). Effect of low doses of cobalt-60 gamma radiation on some physical properties and the structure of wool fibers. Text. Res. J., 44, 986–994.CrossRefGoogle Scholar
  10. Bendit, F. G. and Feughelman, M. (1968). Keratin. Fncycl. of Polymer Sci. and Tech., 8, 1–44.Google Scholar
  11. Bradbury, J. H. (1973). Structure and chemistry of keratin fibers. Adv. Protein Chem., 27, 111–211.PubMedCrossRefGoogle Scholar
  12. Bradbury, J. H., Chapman, G. V., King, N. L. R. and O’Shea, J. M. (1970). Keratin fibers: amino acid analyses of histological components. Aust. J. Biol. Sci., 23, 637–643.Google Scholar
  13. Broad, A., Gillespie, J. M. and Reis, P. J. (1970). The influence of sulfur-containing amino acids on the biosynthesis of high-sulfur wool proteins. Aust. J. Biol. Sci., 23, 149–164.Google Scholar
  14. Caldwell, J. B., Leach, S. J. and Milligan, B. (1965). The mechanism of setting and the release of set in water. Text. Res. J., 35, 245–251.Google Scholar
  15. Caldwell, J. B., Leach, S. J. and Milligan, B. (1966). Solubility as a criterion of crosslinking in wool. Text. Res. J., 36, 1091–1095.CrossRefGoogle Scholar
  16. Caldwell, J. B. and Milligan, B. (1970). The estimation of crosslinks in wool from the extent of swelling in formic acid. J. Text. Inst., 61, 588–596.CrossRefGoogle Scholar
  17. Caldwell, J. B. and Milligan, B. (1972). The sites of reaction of wool with formaldehyde. Text. Res. J., 42, 122–124.CrossRefGoogle Scholar
  18. Campbell, M. E., Whiteley, K. J. and Gillespie, J. M. (1972). Compositional studies of high-and low-crimp wools. Aust. J. Biol. Sci., 25, 977–987.PubMedGoogle Scholar
  19. Chapman, B. M. (1969). A review of the mechanical properties of keratin fibers. J. Text. Inst., 60, 181–207.CrossRefGoogle Scholar
  20. Charlesby, A. (1960). “Atomic Radiation and Polymers,” Pergamon Press, New York.Google Scholar
  21. Cole, M., Fletcher, J. C., Gardner, K. L., and Corfield, M. C. (1971). A study of enzymatic hydrolysis applicable to the examination of processed wools. Appl. Polymer Symp., 18, 147–161.Google Scholar
  22. Cook, J. R. and Delmenico, J. (1968). Measuring the “melting point” of wool. J. Text. Inst., 59, 157–160.Google Scholar
  23. Corfield, M. C., Wood, C., Robson, A., Williams, M. J. and Woodhouse, J. M. (1967). The formatition of lysinoalanine during the treatment of wool with alkali. Biochem. J., 103, 15C-16C.Google Scholar
  24. Crewther, W. G. (1965). The stress-strain characteristics of animal fibers after reduction and alkylation. Text. Res. J., 35, 867–877.CrossRefGoogle Scholar
  25. Crewther, W. G., Dowling, L. M., Inglis A. S. and McLaren, J. A. (1967). The formation of various crosslinkages in wool and their effect on the supercontraction properties of fibers. Text. Res. J., 37, 736–745.CrossRefGoogle Scholar
  26. Crighton, J. S., Findon, W. M. and Happey, F. (1971). Application of thermoanalytical methods in the study of keratins and related proteins. Appl. Polymer Symp., 18, 847–856.Google Scholar
  27. Ebert, G. and Müller, F. H. (1966). Differential calorimetrimetrische Untersuchungen über den Einfluss von Cystin und Thioätherbindüngen auf Umlage rungsvorgänge in Keratinfasern. Koll.-Z. u. Z. für Polymere, 214, 38–45.CrossRefGoogle Scholar
  28. Feughelman, M. (1963). The mechanical properties of permanently set and cystine reduced wool fibers at vaious relative humidities and the structure of wool. Text. Res. J., 33, 1013–1022.Google Scholar
  29. Feughelman, M. (1966). Sulfhydryl-disulfide interchange and the stability of keratin structure. Nature, 211, 1259–1260.CrossRefGoogle Scholar
  30. Feughelman, M. and Chapman, B. M. (1966). The swelling of wool fibers with reduced disulfide content in 98% formic acid. Text. Res. J., 36, 1110–1111.CrossRefGoogle Scholar
  31. Feughelman, M. and Mitchell, T. (1964). The torsional properties of single wool fibers. III. Disulfide reduced and permanently set wool fibers. Text. Res. J., 34, 593–597.CrossRefGoogle Scholar
  32. Feughelman, M. and Mitchell, T. W. (1966). The melting of alpha keratin in water. Text. Res. J., 36, 578–579.CrossRefGoogle Scholar
  33. Feughelman, M. and Reis, P. J. (1964). The longitudinal mechanical properties of wool fibers and their relationship to the low-sulfur keratin fraction. Text. Res. J., 34, 334–336.Google Scholar
  34. Fraser, R. D. B., MacRae, T. P., Millward, G. R., Parry, D. A. D., Suzuki, E. and Tulloch, P. A. (1971). The molecular structure of keratins. Appl. Polymer Symp., 18, 65–83.Google Scholar
  35. Fraser, R. D. B., MacRae, T. P. and Rogers, G. E. (1972). “Keratins,” Charles C. Thomas, Springfield, Illinois.Google Scholar
  36. Frazer, L. A., Leach, S. J. and Milligan, B. (1968). Thermal transitions in reduced wool fibers. J. Appl. Polymer Sci., 12, 1992–1996.Google Scholar
  37. Friedman, M. and Tillin, S. (1974). Partly reduced alkylated wool. Text. Res. J., 44, 578–580.CrossRefGoogle Scholar
  38. García-Domínguez, J. J., Miró, P., Reig, F. and Anguera, S. (1971). The formation of beta-aminoalanino-alanine in alkaline treated wool. Appl. Polymer Symp., 18, 269–275.Google Scholar
  39. Gillespie, J. M. (1967). The high-sulfur proteins of alpha-keratins: their relation to fiber structure and properties. J. Polymer Sci., C20, 201–214.Google Scholar
  40. Gillespie, J. M. (1970). The swelling of keratins in formic acid. Text. Res. J., 40, 853–855.Google Scholar
  41. Gordon, A. H., Martin, A. J. P. and Synge, R. L. M. (1941). A study of the partial acid hydrolysis of some proteins, with special reference to the mode of linkage of the basic amino acids. Biochem., 35, 1369–1387.Google Scholar
  42. Griffith, J. C. and Mason, P. (1966). The effect of formaldehyde on wool before, during, and after contraction in lithium bromide solution. Text. Res. J., 36, 1021–1022.CrossRefGoogle Scholar
  43. Heyns, K., Walter, W. and Grützmacher, H. F. (1958). Zur Frage der Unterscheidung sterischer und induktiver Einflüsse beim Abbau synthetischer Polypeptide. J. Polymer Sci., 30, 573–579.CrossRefGoogle Scholar
  44. Hinton, E. H., Jr. (1974). A survey and critique of the literature on crosslinking agents and mechanisms as related to wool keratin. Text. Res. J., 44, 233–292.CrossRefGoogle Scholar
  45. Holt, L. A. and Milligan, B. (1970). The introduction of amide and ester crosslinks into wool. J. Text. Inst., 61, 597–603.CrossRefGoogle Scholar
  46. Khayatt, R. M. and Chamberlain, N. H. (1948). The bending modulus of animal fibers. J. Text. Inst., 38, T185–197.Google Scholar
  47. Kilpatrick, D. J. and Maclaren, J. A. (1970). A solubility test for wool and its application in studies on chemically modified wools. Text. Res. J., 40, 25–28.CrossRefGoogle Scholar
  48. Leach, S. J., Rogers, G. E. and Filshie, B. K. (1964). The selective extraction of wool keratin with dilute acid. I. Chemical and morphological changes. Arch. Biochem. Biophys., 105, 270–287.PubMedCrossRefGoogle Scholar
  49. Mason, P. (1965). Thermal transitions in keratin. IV. Experiments in lateral compression. Text. Res. J., 35, 736–742.CrossRefGoogle Scholar
  50. Menefee, E. (1968). A mechanical model for wool. Text. Res. J., 38, 1149–1163.CrossRefGoogle Scholar
  51. Menefee, E. (1971). Relation of keratin structure to its mechanical behavior. Appl. Polymer Symp., 18, 809–821.Google Scholar
  52. Menefee, E. and Bartulovich, J. J. (1965). Crosslinking in keratins. I. Theory for solubility on simultaneous chain scission and crosslink cleavage. J. Appl. Polymer Sci., 9 2819–2827.CrossRefGoogle Scholar
  53. Menefee, E. and Yee, G. (1965a). Thermally induced structural changes in wool. Text. Res. J., 35, 801–812.CrossRefGoogle Scholar
  54. Menefee, E. and Yee, G. (1965b). Crosslinking in keratins. III. Acid hydrolysis of keratins. J. Appl. Polymer Sci., 9, 2835–2846.CrossRefGoogle Scholar
  55. Milligan, B., Holt, L. A. and Caldwell, J. B. (1971). The enzymic hydrolysis of wool for amino acid analysis. Appl. Polymer Symp., 18, 113–125.Google Scholar
  56. Miro, P. and Garcia-Dommguez, J. J. (1966). Bestimmung von Lysinoalanin in Hydrolysaten von Wolle nach Hitze-und Alkalibehandlung. Melliand Textilber., 47, 676–680.Google Scholar
  57. Miro, P. and García-Domínguez, J. J. (1967a). Methode zur gleichzeitigen Bestimmung von Lanthionin und Lysinoalanin in Hydrolysaten von Wolle. Melliand Textilber., 48, 558–560.Google Scholar
  58. Miró, P. and García-Domínguez, J. J. (1967b). Action of nucleophilic reagents on wool. J. Soc. Dyers Col., 83, 91–95.CrossRefGoogle Scholar
  59. Miró, P. and García-Domínguez, J. J. (1968). Action of nucleophilic reagents on wool. II. Action of sodium sulfite at pH 8. 6. J. Soc. Dyers Col., 84, 310–313.CrossRefGoogle Scholar
  60. Orwell, R. L., Datyner, A. and Nicholls, C. H. (1966). Disulfide bond breakdown in wool during high temperature steam treatments. J. Soc. Dyers Col., 82, 441–446.CrossRefGoogle Scholar
  61. Otterburn, M. S. (1975). Crosslinking by lysinoalanine in set and alkali-treated wool. Text. Res. J., 45, 88–89.CrossRefGoogle Scholar
  62. Reddie, R. N. and Nicholls, C. H. (1971). Some reactions between wool and formaldehyde. Text. Res. J., 41, 841–852.CrossRefGoogle Scholar
  63. Robson, A., Williams, M. J. and Woodhouse, J. M. (1969). The formation of lysino alanine and lanthionine in wool fibers stretched in boiling water, and their relation to permanent set. J. Text. Inst., 60, 140–151.CrossRefGoogle Scholar
  64. Rudall, K. M. (1947). X-ray studies of the distribution of protein chain types in the vertebrate epidermis. Biochim. Biophys. Acta, 1, 549–562.CrossRefGoogle Scholar
  65. Sims, R. T. (1970). Hair as an indicator of incipient and developed malnutrition and response to therapy — principles and practice. In “An Introduction to the Biology of the Skin,” R. H. Champion, T. Gillman, A. J. Poole and R. T. Sims (Editors), Blackwell Scientific Publ., Oxford.Google Scholar
  66. Sotiriou-Provata, M. aand Vassiliadis, A. (1966). Treatments of wool in organic solvents and their effect on the ureabisulfite test. Text. Res. J., 36, 1031–1037.CrossRefGoogle Scholar
  67. Susich, G. and Zagieboylo, W. (1953). The tensile behavior of some protein fibers. Text. Res. J., 23, 405–417.CrossRefGoogle Scholar
  68. Sweetman, B. J. (1967). The hydrothermal degradation of wool keratin. II. Chemical changes associated with the treatment of wool with water or steam at temperatures above 100°. Text.Res. J., 37, 844–851.CrossRefGoogle Scholar
  69. Synge, R. L. M. (1945). The kinetics of low temperature acid hydrolysis of gramicidin and of some related dipeptides. Biochem. J., 39, 351–355.Google Scholar
  70. Watt, I. C. (1965). The modification of wool fibers by crosslinking reactions. Proc. Int. Wool Textile Res. Conf., Paris, II, 259–270.Google Scholar
  71. Watt, I. C. (1971). Modification of physical properties of wool fibers. Appl. Polymer Symp., 18, 905–914.Google Scholar
  72. Watt, I. C. (1975). Properties of wool fibers heated to temperatures above 100°C. Text. Res. J., 45, 728–735.CrossRefGoogle Scholar
  73. Watt, I. C. and Morris, R. (1968). Selective crosslinking in the microfibrillar component of keratin. Text. Res. J., 38, 674–675.CrossRefGoogle Scholar
  74. Watt, I. C. and Morris, R. (1970). Evidence for methylenedithion crosslinks in formaldehyde-treated keratin. Text. Res. J., 40, 952–953.Google Scholar
  75. Weigmann, H.-D. and Dansizer, C. (1969). The stabilization of irreversibly deformed keratin fibers. Text. Res. J., 39, 692–699.Google Scholar
  76. Weigmann, H.-D. and Dansizer, C. (1971a). The stabilization of irreversibly deformed keratin fibers. II. Mechanism of stabilization. Text. Res. J., 41, 576–586.CrossRefGoogle Scholar
  77. Weigmann, H.-D. and Dansizer, C. (1971b). Effects of crosslinks on the mechanical properties of keratin fibers. Appl. Polymer Symp., 18, 795–807.Google Scholar
  78. Weigmann, H.-D., Rebenfeld, L. and Dansizer, C. (1966). Kinetics and temperature dependence of the chemical stress relaxation of wool fibers. Text. Res. J., 36, 535–542.CrossRefGoogle Scholar
  79. Whiteley, K. J., Balasubramaniam, E. and Armstrong, L. D. (1970). The swelling and supercontraction of sulfur-enriched wool fibers. Text. Res. J., 40, 1047–1048.Google Scholar
  80. Zahn, H. (1943). Über thermisch verkurzte Keratinfasern. Naturwissenschaf ten, 31, 137–139.CrossRefGoogle Scholar
  81. Zahn, H. (1955). Crosslinking reactions with amino acids and fibrous proteins. Proc. Int. Wool Textile Res. Conf., Australia, C, 425–451.Google Scholar
  82. Zahn, H., Beyer, H., Hammoudeh, M. M. and Schallah, A. (1969). Vernetzungs-und Selbstvernetzungsreaktionen bei Wolle. Melliand Textilber., 11, 1319–1324.Google Scholar
  83. Zahn, H., Schallah, A., Scharff, D. and Meichelbeck, H. (1971). Crosslinking of wool during treatment with carboxylic acid chlorides. Appl. Polymer Symp., 18, 163–174.Google Scholar
  84. Ziegler, Kl. (1964). New crosslinks in alkali treated wool. J. Biol.Chem., 239, 2713–2714.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Emory Menefee
    • 1
  1. 1.Agricultural Research Service, U. S. Department of AgricultureWestern Regional Research LaboratoryBerkeleyUSA

Personalised recommendations