Biologically Important Thiol-Disulfide Reactions and the Role of Cyst(E)Ine in Proteins: an Evolutionary Perspective

  • Robert C. Fahey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86A)


Selected aspects of the reactions of thiols and disulfides are reviewed in an evolutionary context with special emphasis on the implications of the transition from a reducing to an oxidizing atmosphere on the earth. It is argued that thiols were important in prebiotic chemistry and in primitive metabolism but that disulfides, owing to their general instability in a reducing environment, came to be of importance as structural links in proteins only after the transition to an oxidizing atmosphere. The occurrence of glutathione is reviewed and discussed in terms of the role of glutathione in maintaining a reducing intracellular environment. the occurrence of cysteine and cystine in intracellular and extracellular proteins of bacteria and of animals is examined in terms of the redox state of the environment in which the protein functions. Thiol-disulfide changes associated with the dormant state are described and the role of cellular water content in dormancy is discussed. the potential significance of reactions between thiols and products of oxidative metabolism is discussed with special emphasis upon thiol additions to carbonyl and α,β-unsaturated carbonyl groups and their possible role in steroid-receptor interaction.


Thiol Group Dormant State Disulfide Link Dehydroascorbic Acid Evolutionary Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abiko, Y. (1975). in “Metabolism of Sulfur Compounds”, D. M. Greenberg, Ed., Academic Press, New York, p. 1.Google Scholar
  2. Allison, W. S. (1976). Accounts Chem. Res., 9, 293.CrossRefGoogle Scholar
  3. Apontoweil, P. and Berends, W. (1975). Biochim. Biophys. Acta, 399, 10.PubMedCrossRefGoogle Scholar
  4. Arias, I. M. and Jakoby, W. B. (1976). “Glutathione: Metabolism and function”, Raven Press, New York.Google Scholar
  5. Arsenault, G. P., Biemann, K., Barksdale, A. W., and McMorris, T. C. (1968). J. Amer. Chem. Soc., 90, 5635.CrossRefGoogle Scholar
  6. Barnett, R. E. and Jencks, W. P. (1969). J. Amer. Chem. Soc, 91, 6758.CrossRefGoogle Scholar
  7. Barron, E. S. G. (1951). Adv. Enzymology, 11, 201.Google Scholar
  8. Barron, E. S. G. and Singer, T. P. (1943). Science, 97, 356PubMedCrossRefGoogle Scholar
  9. Benöhr, H. Ch. and Waller, H. D. (1975). Klin. Wschr., 53, 789.PubMedCrossRefGoogle Scholar
  10. Berkoff, C. E. (1969). Quart. Rev., 23, 372.CrossRefGoogle Scholar
  11. Boyer, P. D. and Segal, H. L. (1954). in “A Symposium on the Mechanism of Enzyme Action”, W. D. McElroy and B. Glass, Eds., Johns Hopkins University Press, Baltimore, p. 520.Google Scholar
  12. Broda, E. (1975). “The Evolution of the Bioenergetic Process”, Pergamon Press, New York.Google Scholar
  13. Bump, E. A. (1976). Thesis, Oregon State UniversityGoogle Scholar
  14. Capozzi, G. and Modena, G. (1974). in “The Chemistry of the Thiol Group”, S. Patai, Ed., Wiley, New York.Google Scholar
  15. Chasseaud, L. F. (1976). in “Glutathione: Metabolism and Function”, I. M. Arias and W. B. Jakoby, Eds., Raven Press, New York, p. 77.Google Scholar
  16. Cleland, W. W. (1964). Biochem., 3, 480.CrossRefGoogle Scholar
  17. Colowick, S., Lazarow, A., Racker, E., Schwarz, D. R., Stadtman, E., and Waelsch, H. (1954). “Glutathione: A Symposium”, Academic Press, New York.Google Scholar
  18. Crook, E. M. (1950). “Glutathione”, Biochem. Soc. Symp. No. 17, Cambridge Univ. Press, London and New York.Google Scholar
  19. Fahey, R. C., Brody, S., and Mikolajczyk, S. D. (1975). J. Bacteriol., 121, 144.PubMedGoogle Scholar
  20. Fahey, R. C., Brody, S. and Mikolajczyk, S. D. (1977). SubmittedGoogle Scholar
  21. Fahey, R. C., Brody, S., Worsham, M. B., and Mikolajczyk, S. D. (1976). Unpublished resultsGoogle Scholar
  22. Fahey, R. C., Brown, W. C., Adams, W. B., and Worsham, M. B. (1977). SubmittedGoogle Scholar
  23. Fahey, R. C., Hunt, J. S. and Windham, G. C. (1977). SubmittedGoogle Scholar
  24. Fahey, R. C., Meier, G. P. and DiStefano, D. (1977). SubmittedGoogle Scholar
  25. Fahey, R. C., Mikolajczyk, S. D., Meier, G. P., Epel, D. and Carroll, E. J. (1976). Biochim. Biophys. Acta, 437, 445.PubMedCrossRefGoogle Scholar
  26. Fahey, R. C. and Windham, G. C. (1976). Unpublished resultsGoogle Scholar
  27. Flohé, L., Benöhr, H. Ch., Sies, H., Waller, H. D. and Wendel, A. (1974). “Glutathione”, Academic Press, New York.Google Scholar
  28. Flohé, L. and Gunzler, W. A. (1976). in “Glutathione: Metabolism and Function”, I. M. Arias and W. B. Jakoby, Eds., Raven Press, New York, p. 17.Google Scholar
  29. Fluharty, A. L. (1974). in “The Chemistry of the Thiol Group”, S. Patai, Ed., John Wiley, New York, Part 2, p. 589.Google Scholar
  30. Fridovich, I. (1974). in “Horizons in Biochemistry and Biophysics”, E. Quagliariello, F. Palmieri, and T. P. Singer, Eds., Addison-Wesley, Reading, Massachusetts, Vol. 1, p. 1.Google Scholar
  31. Friedman, M. (1973). “The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides and Proteins”, Pergamon, New York.Google Scholar
  32. Friedmann, N. and Miller, S. L. (1969). Science, 166, 766.PubMedCrossRefGoogle Scholar
  33. Fuchs, J. A. and Warner, H. R. (1975). J. Bacteriol., 124, 140.PubMedGoogle Scholar
  34. Gerschman, R. (1964). in “Oxygen in the Animal Organism”, F. Dickens and E. Neil, Eds., MacMIllan, New York, p. 475.Google Scholar
  35. Gross, D. (1975). Phytochem., 14, 2105.CrossRefGoogle Scholar
  36. Guntherberg, H. and Rost, J. (1966). Anal. Biochem., 15, 205.PubMedCrossRefGoogle Scholar
  37. Hall, D. O., Cammack, R. and Rao, K. K. (1974). Origin of Life 5, 363.CrossRefGoogle Scholar
  38. Haugaard, N. (1968). Physiol. Rev., 48, 311.PubMedGoogle Scholar
  39. Haugaard, N. (1974). in “Molecular Oxygen in Biology”, O. Hayaishi, Ed., North-Holland Publishing Co., Amsterdam, p. 163.Google Scholar
  40. Hopkins, F. G. (1921). Biochem. J., 15, 286.PubMedGoogle Scholar
  41. Hopkins, F. G. and Morgan, E. J. (1938). Biochem. J. 32, 611.PubMedGoogle Scholar
  42. Jocelyn, P. C. (1972). “Biochemistry of the SH Group”, Academic Press, London.Google Scholar
  43. Jurasek, L., Fackre, D. and Smillie, L. B. (1969). BBRC, 37, 99.PubMedGoogle Scholar
  44. King, J. L. and Jukes, T. H. (1969). Science, 164, 788.PubMedCrossRefGoogle Scholar
  45. Kornberg, A. (1974). “DNA Synthesis”, Freeman, San Francisco.Google Scholar
  46. Kosower, N. S. and Kosower, E. M. (1974). in “Glutathione: Metabolism and Function”, I. M Arias and W. B. Jakoby, Eds., Raven Press, New York, p. 159.Google Scholar
  47. Kosower, N. S. and Kosower, E. M. (1969). Nature, 224, 117.PubMedCrossRefGoogle Scholar
  48. Kosower, N. S., Vanderhoff, G. A. and Kosower, E. M. (1972). Biochim. Biophys. Acta, 272, 623.PubMedGoogle Scholar
  49. Krakow, J. S. (1975). Biochemistry, 14, 4522.PubMedCrossRefGoogle Scholar
  50. Kupchan, S. M., Giacobbe, T. J., Krull, I. S., Thomas, A. M., Eakin, M. A. and Fessier, D. C. (1970). J. Org. Chem., 35, 3539.CrossRefGoogle Scholar
  51. Kupchan, S. M. (1974). Fed. Proceed., 33, 2288.Google Scholar
  52. Kupchan, S. M., Sigel, C. W., Matz, M. J., Gilmore, C. J. and Bryan, R. F. (1976). J. Amer. Chem. Soc., 98, 2295.CrossRefGoogle Scholar
  53. Lienhard, G. E. and Jencks, W. P. (1966). J. Amer. Chem. Soc, 88, 3982.CrossRefGoogle Scholar
  54. Loftfield, R. B. (1971). in “Proteins Synthesis”, E. H. McConkey, Ed., Marcel Dekker, New York, p. 1.Google Scholar
  55. Margulis, L. (1970). “Origin of Eukaryotic Cells”, Yale University Press, New Haven.Google Scholar
  56. Meister, A. (1974). in “Glutathione”, L. Flohe, et al, Eds, Academic Press, New York, p. 56.Google Scholar
  57. Meister, A. (1975). in “Metabolism of Sulfur Compounds”, D. M. Greenberg, Ed., Academic Press, New York, p. 101.Google Scholar
  58. Milborrow, B. V. (1974). Recent Adv. in Phytochem., 7, 57.Google Scholar
  59. Miller, S. L. and Orgel, L. E. (1974). “The Origins of Life on Earth”, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  60. Miller, T. E. and Stone, R. W. (1938). J. Bacteriol., 36, 248.Google Scholar
  61. Miyadera, T. and Kosower, E. M. (1972). J. Med. Chem., 15, 534.PubMedCrossRefGoogle Scholar
  62. Murphey, W. H., Barnaby, C., Lin, F. J. and Kaplan, N. O. (1967). J. Biol. Chem., 242, 1548.PubMedGoogle Scholar
  63. Nolan, R. D. and Hoagland, M. B. (1971). Biochim. Biophys. Acta, 247, 609.PubMedGoogle Scholar
  64. Olafson, R. W., Jurasek, L., Carpenter, M. R. and Smillie, L. B. (1975). Biochemistry, 14, 1168.PubMedCrossRefGoogle Scholar
  65. Olson, M. O. J., Nagabhushan, N., Dzwinill, M., Smillie, L. B. and Whitaker, D. R. (1970). Nature, 228, 488.CrossRefGoogle Scholar
  66. Ondrejickova, O., Drobnica, L., Sedlacek, J., and Rychlik, I. (1974). Biochem. Pharmacol., 23, 2751.PubMedCrossRefGoogle Scholar
  67. Pollock, M. R. and Richmond, M. H. (1962). Nature, 194, 446.PubMedCrossRefGoogle Scholar
  68. Rapkine, L. (1930). Compt. rend., 191, 871.Google Scholar
  69. Rapkin, L. (1938). Biochem. J., 32, 1729.Google Scholar
  70. Rauline, F. and Toupance, G. (1975). Origins of Life, 6, 91, 507.CrossRefGoogle Scholar
  71. Reeck, G. R. (1970). in “Handbook of Biochemistry”, H. A. Sober, Ed., 2nd edn., Chemical Rubber Co., Cleveland.Google Scholar
  72. Reeck, G. R. and Fisher, L. (1973). Int. J. Peptide Protein Res., 5, 109.CrossRefGoogle Scholar
  73. Reddy, M. N., Keim, P. S., Heinrikson, R. L. and Kezdy, R. J. (1975). J. Biol. Chem., 250, 1741.PubMedGoogle Scholar
  74. Rees, A. M. and Bell, P. A. (1975). Biochim. Biophys. Acta, 411, 121.PubMedCrossRefGoogle Scholar
  75. Reynolds, S. J., Yates, D. W. and Pogson, C. I. (1971). Biochem. J., 122, 285.PubMedGoogle Scholar
  76. Robertus, J. D., Alden, R. A., Birktoft, J. J., Kraut, J. C., Powers, J. C. and Wilcox, P. E. (1972). Biochemistry, 11, 2439.PubMedCrossRefGoogle Scholar
  77. Sagan, C. and Khare, B. N. (1971). Science, 125, 417.CrossRefGoogle Scholar
  78. Segal, H. L. and Boyer, P. D. (1953). J. Biol. Chem., 204, 265.PubMedGoogle Scholar
  79. Selzer, S. (1972). in “The Enzymes”, Vol. VII, 3rd edition, P. D. Boyer, Ed., Academic Press, New York, p. 381.Google Scholar
  80. Siler, J. G. and Moldave, K. (1971). in “Protein Synthesis”, Vol. 1, E. H. McConkey, Ed., Marcel Dekker, New York, p. 121.Google Scholar
  81. Srivastava, S. K. and Beutler, E. (1968). Anal. Biochem., 25, 70.PubMedCrossRefGoogle Scholar
  82. Tietz, F. (1969). Anal. Biochem., 27, 502.CrossRefGoogle Scholar
  83. Torchinskii, Yr. M. (1974). “Sulfhydryl and Disulfide Groups of Proteins”, H. B. F. Dixon, Translator, Consultants Bureau, New York.Google Scholar
  84. Urey, H. C. (1952). Proc. Nat. Acad. Sci., 38, 349.CrossRefGoogle Scholar
  85. Van Trump, J. E. and Miller, S. L. (1972). Science, 178, 859.PubMedCrossRefGoogle Scholar
  86. Vennesland, B. and Conn, E. E. (1954). in “Glutathione”, S. Colowick, et al, Eds., Academic Press, New York, p. 105.Google Scholar
  87. Wendell, P. L. (1970). Biochem. J., 117, 661.PubMedGoogle Scholar
  88. Wieland, T. (1954). in “Glutathione”. S. Colowick, et al, Eds., Academic Press, New York, p. 45.Google Scholar
  89. Yasunobu, K. T. and Tanaka, M. (1973). in “Iron-Sulfur Proteins”, Vol. II, W. Lovenberg, Ed., Academic Press, New York, p. 29.Google Scholar
  90. Young, J. D., Nimmo, I. A. and Hall, J. G. (1975). Biochim. Biophys. Acta, 404, 124.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Robert C. Fahey
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations