The Role of Membrane Damage in Radiation-Induced Cell Death

  • Tikvah Alper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 84)


Radiation-induced cell death is probably mediated primarily through deposition of energy, in single events, in a few vital macromolecules, or targets, the integrity of which is indispensable for proliferation. The genome is customarily regarded as the main target, but several lines of evidence support the inference that there are important consequences of events in nuclear membranes in eukaryotes, and plasma membrane in bacteria.


Membrane Damage Linear Energy Transfer Lysosomal Membrane Yellow Fever Virus Oxygen Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ALLISON, A.C. and PATOH, G.R.: Chromosome damage in human diploid cells following activation of lysosomal enzymes. Nature, Lond. 207 (1965) 1170.CrossRefGoogle Scholar
  2. 2.
    ALPER, T.: Bacteriophage as indicator in radiation chemistry. Rad. Res. 2 (1955)119CrossRefGoogle Scholar
  3. 3.
    ALPER, T.: The modification of damage caused “by primary ionization of biological targets. Rad. Res. 5 (1956) 573.CrossRefGoogle Scholar
  4. 4.
    ALPER, T.: Lethal mutations and cell death. Physics in Med. and Biol.8 (1963) 365.CrossRefGoogle Scholar
  5. 5.
    ALPER, T.: A characteristic of the lethal effect of ionizing radiation on “Her-” “bacterial strains. Mutat. Res. 4 (1967) 15.PubMedCrossRefGoogle Scholar
  6. 6.
    ALPER, T.: Cell death and its modification: the roles of primary lesions in membranes and DMA. In Biophysical Aspects of Radiation Quality. STI/PHB/286 IAEA, Vienna (1971) 171.Google Scholar
  7. 7.
    ALPEE, T., CEAMP, W.A., HAIG, D.A. and CLARKE, M.C.: Does the agent of scrapie replicate without nucleic acid? Mature, Lond. 214 (1967) 764.CrossRefGoogle Scholar
  8. 8.
    ALPER, T. and HAIG, D.A.: Protection by anoxia of the scrapie agent and some DNA and MA viruses irradiated as dry preparations. J. Gen. Tirol. 3 (1968) 157.CrossRefGoogle Scholar
  9. 9.
    ALPEE, T. and HOWARD-FLMDEES, P.: The role of oxygen in modifying the radiosensitivity of E. coli B. Nature 178 (1956) 978.CrossRefGoogle Scholar
  10. 10.
    ALPEE, T. and MOOEE, J.L.: The interdependence of oxygen enhancement ratios for 250 kYp X-rays and fast neutrons. Br. J. Eadiol. 40 (1967) 843.CrossRefGoogle Scholar
  11. 11.
    ALPEE, T., MOOEE, J.L. and BEWLEY, D.K. Let as a determinant of bacterial radiosensitivity, and its modification by anoxia and glycerol. Ead. Ees. 32 (1967) 277.Google Scholar
  12. 12.
    AHDEESON, E.S. and TüEKOWITZ, H.: The experimental modification of the sensitivity of yeast to roentgen rays. imer. J. Eoentgenol. and Eadium Therapy 46 (1941) 537.Google Scholar
  13. 13.
    BACQ, Z.M. and ALEXANDER, P.: Fundamentals of Eadiobiology. Butterworths, London (1955) 185ff.Google Scholar
  14. 14.
    BRUSTAD, T.: Heavy ions and some aspects of their use in molecular and cellular radiobiology. Advances Biol. Med. Phys. 8 (1962) 161.Google Scholar
  15. 15.
    BEYANT, P.E.: LET as a determinant of oxygen enhancement ratio and shape of survival curve for Chlamydomonas. Int. J. Eadiat. Biol. 23 No. 3 (1973) 217.CrossRefGoogle Scholar
  16. 16.
    BTJEEELL, A.B., FELDSCHREIBEE and DEM, C.J.: DIA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim et Biophys. Acta 247 (1971) 38.Google Scholar
  17. 17.
    CHANDLER, R.L.: Experimental scrapie in the mouse. Ees. Vet. Sci. 4 (1963) 276.Google Scholar
  18. 18.
    CHRISTENSEN, B.C., TOBIAS, O.A. and TAYLOR, W.D.: Heavy-ion-induced single- and double-strand “breaks in ØK-174 replicative form DNA. Int. J. Radiat. Biol. 22 (1972) 457.CrossRefGoogle Scholar
  19. 19.
    CLAREE, M.C. and MILLSON, G.C.: The membrane location of scrapie infectivity. J. Gen. Tirol. (1976) in press.Google Scholar
  20. 20.
    CRAMP, W.A. and PETRUSEK, R.: The synthesis of DNA by membrane-DNA complexes from E. coli B/r and E. coli Bs-1 after exposure to UV light: a comparison with the effects of ionizing radiation. Int. J. Radiat. Biol. 26 (1974) 277.CrossRefGoogle Scholar
  21. 21.
    CRAMP, W.A. and WALKER, A.: The nature of the new MA synthesized by DNA-membrane complexes isolated from irradiated E. coli. Int. J. Radiat. Biol. 25 (1974) 175.CrossRefGoogle Scholar
  22. 22.
    CRAMP, W.A., WATKINS, D.K. and COLLINS, J.: Effects of ionizing radiation on bacterial DNA-membrane complexes. Nature New Biol. 235 No. 55 (1972) 76.PubMedGoogle Scholar
  23. 23.
    DEFILIPPES, P.M.. and GUILD, W.R.: Irradiation of solutions of transforming DNA. Rad. Res. 11 (1959) 38.CrossRefGoogle Scholar
  24. 24.
    DESAI, I.D., SAWAMT, P.L. and TAPPEL, A.L.: Peroxidative and radiation damage to isolated lysosomes. Biochim et Biophys Acta 86 (1964) 277.CrossRefGoogle Scholar
  25. 25.
    EKERT, M.B. and GRUNBERG-MANAGO, M. s Effets des rayons γ sur l’efficacité de quelques polyribonucleotides en tant que messagers. C.R. Acad. Sc. Paris 263 (1966) 1762.Google Scholar
  26. 26.
    EKERT, B. and LATARJET, M-F.: Inactivation par les rayons Y des propriétés fonctionelles des RNA de transfert d’E. coli (phenyl-alanine et lysine). Int. J. Radiat. Biol. 20(1971) 521.CrossRefGoogle Scholar
  27. 27.
    EKERT, B., MONIER, R. and TORDJMAN, A.: Etude de l’inactivation par les radiation ionisantes des propriétés acceptrices des acides ribonucleiques de transfert. Bull, de la Soc. de Chim. Biol. 50 (1968) 1875.Google Scholar
  28. 28.
    EPHRUSSI-TAYLOR, H. and LATARJET, R.: Inactivation,par les rayons X, dfun facteur transformant du Pneumococque. Biochim et Biophys. Acta 16 (1955) 183.CrossRefGoogle Scholar
  29. 29.
    FORAGE, A.J.s The dependence of the oxygen enhancement ratio on the test of damage in irradiated bacteria. Int. J. Radiat. Biol. 20 (1971) 427.CrossRefGoogle Scholar
  30. 50.
    GIBBONS, R.A. and HUNTER, G.D.: Nature of the scrapie agent. Nature 21£ (1967) 1041Google Scholar
  31. 31.
    HILL, R.P.: A radiation sensitive mutant of Escherichia coli, Biochim. Biophys. Acta 30 (1958) 636.CrossRefGoogle Scholar
  32. 32.
    HOWARD-FLANDERS, P.: Physical and chemical mechanisms in the injury of cells by ionizing radiations. Adv. Biol. Med. Physics 6 (1958) 554.Google Scholar
  33. 33.
    HOWARD-FLANDERS, P.: Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds. Nature 186 (1960) 485.PubMedCrossRefGoogle Scholar
  34. 34.
    HOWARD-FLANDERS, P. and MOORE, D.: The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.02 second after pulsed irradiation. Rad. Res. 9 (1958) 422.CrossRefGoogle Scholar
  35. 35.
    HUNTER, G.D.: Scrapie. Progr. med. Virol. 18 (1974) 289.Google Scholar
  36. 36.
    JACOB, P., RYTER, A. and CITZIN, F.: On the association between DNA and membrane in bacteria. Proc. of Roy. Soc. of London (Series B. Biol. Sciences) Vol. 164 (1966) 267.CrossRefGoogle Scholar
  37. 37.
    KELLERER, A.M. and ROSSI, H.H.: The theory of dual radiation action. Curr. Topics Radiat. Res. Qtly. 8 (1972) 85.Google Scholar
  38. 38.
    KNIPPERS, R. and STRATLING, W.: The DNA-replicating capacity of isolated E. coli wall-membrane complexes. Nature, Lond. 226 (1970) 713.CrossRefGoogle Scholar
  39. 39.
    LATARJET, R., MOEL, B., HAIG, D.A., CLARKE, M.C. and ALPER,T.: Inactivation of the Scrapie agent by near-monochromatic ultraviolet light. Nature 227 (1970) 1341.PubMedCrossRefGoogle Scholar
  40. 40.
    LEA, D.E.: Actions of Radiations on Living Cells. Cambridge Univ. Press (1946).Google Scholar
  41. 41.
    LEA, D.E. and CATCHESIDE, D.G.: The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J. Genet. 45 (1942) 216.CrossRefGoogle Scholar
  42. 42.
    MICHAEL, B.D., ADAMS, G.E., HEWITT, H.B., JONES, W.B.G. and WATTS, M.E.: A post-effect of oxygen in irradiated bacteria: a submillisecond fast mixing study. Rad. Res. 54 (1973) 239.CrossRefGoogle Scholar
  43. 43.
    MILLSON, G.C., HUNTER, G.D. and KMBERLIN, R.H.: An experimental examination of the scrapie agent in cell-membrane mixtures. II. The association of scrapie activity with membrane fractions. J. Comp. Pathol. 81 (1971) 255.PubMedCrossRefGoogle Scholar
  44. 44.
    MOORE, J.L.: An induced enzyme in X-irradiated Escherichia coli: Comparison with lethal effects, J. Gen. Microbiol. 41 (1965) 119.PubMedGoogle Scholar
  45. 45.
    MüNSON, R.J., HEARY, G.J., BRIDGES, B.A. and PRESTOH, R.J.: The sensitivity of Escherichia coli to ionizing particles of different LET’S. Int. J. Radiat. Biol. 13 (1968) 205.CrossRefGoogle Scholar
  46. 46.
    HEARY, G.J.: Chromosome aberrations and the theory of RBE. I. General considerations. Int. J. Radiat. Biol. 9 (1965) 477.Google Scholar
  47. 47.
    HEARY, G.J., HORGM, Y.U., BANCE, D.A. and STRETCH, A.: Further data on DHA strand breakage by various radiation qualities. Int. J. Radiat. Biol. 22 (1972) 525.CrossRefGoogle Scholar
  48. 48.
    SCHAMBRA, P.E. and HUTCHIHSOH, P.: The action of fast heavy ions on biological material. 2. Effects on T1 and ØX-174 bacteriophage and double-strand and single-strand DNA. Rad. Res. 23 (1964) 514.CrossRefGoogle Scholar
  49. 49.
    SCHOLES, G.: The radiation chemistry of aqueous solutions of nucleic acids and nucleoproteins. Prog. Biophys. and Molec. Biol. 13 (1963) 59.CrossRefGoogle Scholar
  50. 50.
    SETLOW, R.B. and CARRIER, W.L.: The disappearance of thymine dimers from DHA: an error correcting mechanism. Proc. Nat. Acad. Sci. 51 (1964) 226.PubMedCrossRefGoogle Scholar
  51. 51.
    SHEHOY, M.A., ASQUITH, J.C., ADAMS, G.E., MICHAEL, B.D. and WATTS, M.E.: Time-resolved oxygen effects in irradiated bacteria and mammalian cells; a rapid-mix study. Rad. Res. 62 (1975) 498.CrossRefGoogle Scholar
  52. 52.
    SMITH, D.W., SCHALLER, H.E. and BOHHOEFFER, P.J.: DHA synthesis in vitro. Nature, Lond. 226 (1970) 711.CrossRefGoogle Scholar
  53. 53.
    SPARVOLI, E., GALLI, M.G., MOSCA, A. and PARIS, G.: Localization of DNA replicator sites near the nuclear membrane in plant cells. Exptal. Cell Res. 97 (1976) 74.CrossRefGoogle Scholar
  54. 54.
    TODD, P.W.: Reversible and irreversible effects of ionizing radiation on the reproductive integrity of mammalian cells cultured in vitro. Ph.D. Thesis UCRL 11614 University of California, Berkeley, Calif.Google Scholar
  55. 55.
    TOWN, C.D., SMITH, K.C. and KAPLAN, H.S.: Influence of ultrafast repair processes (independent of DHA polymerase-1) on the yield of DHA single-strand breaks in Escherichia coli K12 X-Irradiated in the presence or absence of oxygen. Rad. Res. 52 (1972) 99.CrossRefGoogle Scholar
  56. 56.
    VAN DER SCHANS, G.P. and VAN DER DRIFT, A.C.M.: Comparison of the oxygen-enhancement ratio for γ-ray induced double strand “breaks in the DIA of bacteriophage T7 as determined “by two different methods of analysis. Int. J. Radiat. Biol. 27 (1975) 437.CrossRefGoogle Scholar
  57. 57.
    WATKINS, D.K.: High o.e.r. for the release of enzymes from isolated mammalian lysosomes after ionizing radiation. Adv. Biol. Med. Physics 13 (1970) 289.Google Scholar
  58. 58.
    WATKINS, D.K. and DEACON, S.: Comparative effects of electron and neutron irradiation on the release of enzymes from isolated rat-spleen lysosomes. Int. J. Radiat. Biol. 23 (1973) 41.CrossRefGoogle Scholar
  59. 59.
    WILLS, E.D. and WILKINSON, A.E.: Release of enzymes by irradiation and the relation of lipid peroxide formation to enzyme release. Biochem. J. 99 (1966) 657.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Tikvah Alper
    • 1
  1. 1.Gray Laboratory of the Cancer Research CampaignMount Vernon HospitalNorthwoodUK

Personalised recommendations