Lead Actions on Sodium-Plus-Potassium-Activated Adenosinetriphosphatase from Electroplax, Rat Brain, and Rat Kidney

  • George J. Siegel
  • Suzanne K. Fogt
  • Mary Jane Hurley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 84)


Inorganic lead ion, in micromolar concentrations, reversibly inhibits the sodium-plus-potassium-activated adenosinetriphosphatase (ATPase) and potassium-activated p-nitrophenylphosphatase (NPPase) activities of microsomal fractions from electric organ, rat kidney, and rat brain. In the presence of 3 mM MgCl2 and 3 mM ATP, the concentrations of PbCl2 producing half-maximal inhibition of the ATPase from these tissues are 4 × 10-6 M, 20 × 10-6 M, and 55 × 10-6 M, respectively. The corresponding values for inhibition of the NPPase are 10-6 M, 53 × 10-6 M, and 22 × 10-6 M. PbCl2 also stimulates the phosphorylation by [γ-32P]ATP of a microsomal protein from all three tissues in the absence of added sodium ion. This reaction -was extensively studied with electroplax microsomes. In common -with the well-known Na+-dependent phosphorylation of CNa+ + K+)-ATPase, the Fb2 -dependent reaction is inhibited by ouabain, specific for ATP, dependent on Mg2+, and yields an acid-stable phosphoprotein with a molecular weight of 98,000 in sodium dodecylsulfate. The Pb2+-dependent phosphoprotein, however, is not sensitive to K+. These observations are pertinent to the biochemistry and toxicity of inorganic lead in tissues and to the molecular mechanism of the cation transport enzyme.


ATPase Activity Lead Poisoning Electric Organ Adenosine Triphosphatase Dependent Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    ALBERS, R.W., KOVAL, G.J. and SIEGEL, G.J.: Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosine triphosphatase. Mol. Pharmacol. 4 (1968) 324–336.PubMedGoogle Scholar
  2. 1b.
    ALBERS, R.W. and KOVAL, G.J.: Sodium-potassium-activated adenosine triphosphatase VII. Concurrent inhibition of (Na+ + K+)-ATPase and activation of K -nitrophenylphosphatase activities. J. Biol. Chem. 247 (1972) 3088.PubMedGoogle Scholar
  3. 2.
    BJERRUM, J., SCHWARZENBACH, G. and SILLEN, L.G.: Stability Constants of Metal-Ion Complexes, with Solubility Products of Inorganic Substances. The Chemical Society, Burlington House. London (1957).Google Scholar
  4. 3.
    BOCK, R.M.: Adenine nucleotides and properties of pyrophosphate compounds, Ch. 1, The Enzymes (Boyer, P.E., Lardy, H. and Myrback, K. Eds.). 2nd Edition, Academic Press. New York (1960) vol 2, pp. l6.Google Scholar
  5. 4.
    CHISOLM, J.J.Jr.: Treatment of lead poisoning. Mod. Treat. 8 (1971) 593–611.PubMedGoogle Scholar
  6. 5.
    CHOIE, D.D. and RICHTER, G.W.: Cell proliferation in mouse kidney induced by lead. Lab. Investig. 30 (1974) 652.PubMedGoogle Scholar
  7. 6.
    CHOW, C.C. and CORNISH, H.H.: personal communication.Google Scholar
  8. 7.
    COFFIN, R., PHILLIPS, J.L., STAPLES, W.I. and SPECTOR, S.: Treatment of lead encephalopathy in children. J. Pediat. 69 (1966) 198–206.PubMedCrossRefGoogle Scholar
  9. 8.
    COLEMAN, J.E. and VALLEE, B.L.: Metallocarboxypeptidases: stability constants and enzymatic characteristics. J. Biol. Chem. 236 (1961) 2244–2249.PubMedGoogle Scholar
  10. 9.
    CUMINGS, J.N.: Heavy Metals and the Brain pp. 113–120. C.C. Thomas. Springfield (1959).Google Scholar
  11. 10.
    DAHL, J.L. and HOKIN, L.E.: Sodium-potassium-adenosine triphosphatase. Annu. Rev. Biochem. 43 (1974) 327.PubMedCrossRefGoogle Scholar
  12. 11.
    DAVID, O., CLARK, J. and VOELLER, K.: Lead and hyperactivity. Lancet 2 (1912) 900.Google Scholar
  13. 12.
    EPSTEIN, F.H. et al.: Metabolic adjustments of the kidney involved in the adaptation to potassium loading. Med. Clin. North. Am. 59 (1975) 763.PubMedGoogle Scholar
  14. 13.
    FAHN, S., KOVAL, G.J. and ALBERS, B.W.: Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphoryla-tion. J. Biol. Chem. 241 (8) (1966) 1882–1889.PubMedGoogle Scholar
  15. 14.
    FAHN, S., KOVAL, G.J. and ALBERS, R.W.: Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. Phosphorylation by adenosine triphosphate-32P. J. Biol. Chem. 243 (1968) 1993.PubMedGoogle Scholar
  16. 15.
    FELTON, J.S.: Moderator, Heavy metal poisoning: mercury and lead. Annals of Int. Med. 76 (1972) 779–792.Google Scholar
  17. 16.
    FUKUSHIMA, Y. and TONOMORA, Y.: Properties of conversion of an enzyme-ATP complex to a phosphorylated intermediate in reaction of Na+ — K+ — dependent ATPase. J. Biochem. 77 (1975) 533.PubMedGoogle Scholar
  18. 17.
    GOLDIN, S.M. and SWEADNER, K.J.: Reconstitution of active transport by kidney and brain (Na + K)-ATPase. Ann. N.Y. Acad. Sci. 264 (1975) 387.PubMedCrossRefGoogle Scholar
  19. 18.
    GOYER, R.A.: Lead and the kidney. Curr. Topics Pathol. 55 (1971) 147.Google Scholar
  20. 19.
    GUINEE, Y.F.: Lead poisoning in New York City. Trans. N.Y. Acaa. Sci. 33 (1971) 539.CrossRefGoogle Scholar
  21. 20.
    HASAN, J., VIHKO, V. and HERNBERG, S.: Deficient red cell membrane (Na+ + K+)-ATPase in lead poisoning. Arch. Environ. Health 14 (1967) 313–318.PubMedGoogle Scholar
  22. 21.
    HILDEN, S. and HOKIN, L.E.: Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine-triphosphatase from rectal gland of Squalus acanthias. J. Biol. Chem. 250 (1975) 6296. PubMedGoogle Scholar
  23. 22.
    HOKIN, L.E.: Purification and properties of the (sodium + potassium)-activated adenosinetriphosphatase and reconstitution of sodium transport. Ann. N.Y. Acad. Sci. 242 (1974) 12.PubMedCrossRefGoogle Scholar
  24. 23.
    HOKIN, L.E. et al.: Studies on the characterization of the sodium-potassium transport adenosine triphosphatase X. Purification of the enzyme from the rectal gland of Squalus acanthias. J. Biol. Chem. 248 (1973) 2593.PubMedGoogle Scholar
  25. 24.
    IANNACCONE, A. et al.: In vitro effects of lead on enzymatic activities of rabbit kidney mitochondria. Experientia 30 (1974) 467.PubMedCrossRefGoogle Scholar
  26. 25.
    JACOBSEN, N.O. and JORGENSEN, P.L.: A quantitative biochemical and histochemical study of the lead method for localization of adenosine triphosphatehydrolyzing enzymes. J. Histochem. Cytochem. 17 (1949) 443–453.CrossRefGoogle Scholar
  27. 26.
    KATZ, A.I. and EPSTEIN, F.H.: Physiologic role of sodium-potassium-activated adenosinetriphosphatase in the transport of cations across biologic membranes. New Engl. J. Med. 278 (1968) 253.PubMedCrossRefGoogle Scholar
  28. 27.
    KRIGMAN, M.R. et al.: Lead encephalopathy in the developing rat: effect upon myelination. J. Neuropath. Exptl. Neurol. 33 (1974) 58.CrossRefGoogle Scholar
  29. 28.
    LIN-FU, J.S.: Undue absorption of lead among children — a new look at an old problem. New Eng. J. Med. 286 (1972) 702.PubMedCrossRefGoogle Scholar
  30. 29.
    LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L. and RANDALL, R.J.: Protein measurement with the Polin phenol-reagent. J. Biol. Chem. 193 (1951) 265.PubMedGoogle Scholar
  31. 30.
    MARCHESI, V.T. and PALADE, G.E.: The localization of Mg-Na-K-activated adenosine triphosphate on red cell ghost membranes. J. Cell Biol. 35 (1967) 385–404.PubMedCrossRefGoogle Scholar
  32. 31.
    MARSDEN, H.B. and WILSON, Y.K.: Lead poisoning in children: correlation of clinical and pathological findings. Brit. Med. J. (i) (1955) 324–326.CrossRefGoogle Scholar
  33. 32.
    MICHAELSON, I.A.: Effects of inorganic lead on RNA, DNA and protein content in the developing neonatal rat brain. Toxicol. and Appl. Pharmacol. 26 (1973) 539–548.CrossRefGoogle Scholar
  34. 33.
    MICHAELSON, I.A. and SAUERHOFF, M.W.: An improved model of lead-induced brain dysfunction in the suckling rat. Toxic. and Appl. Pharmacol. 28 (1974) 88–96.CrossRefGoogle Scholar
  35. 34.
    MORRISON, J.F. and HEYDE, E.: Enzymic phosphoryl group transfer. Annu. Rev. Biochem. 41 (1972) 29–54.PubMedCrossRefGoogle Scholar
  36. 35.
    NATHANSON, J.A. and BLOOM, P.E.: Lead-induced inhibition of brain adenyl cyclase. Nature 255 (1975) 419.PubMedCrossRefGoogle Scholar
  37. 36.
    PENTSCHEW, A.: Morphology and morphogenesis of lead encephalopathy. Acta Neuropathol. 5 (1965) 133-l60.PubMedCrossRefGoogle Scholar
  38. 37.
    RAIMONDI, A.J., BECKMAN, P. and EVANS, J.P.: Fine structural changes in human lead encephalopathy. Trans. Am. Neurol. Ass. 91 (1966) 322–323.Google Scholar
  39. 38.
    REPKE, K.R.H. and SCHON, R.: Flip-flop model of (NaK)-ATP-ase function. Acta Biol. Med. Germ. 31 (1973) K19–K30.PubMedGoogle Scholar
  40. 39.
    SAUERHOFF, M.W. and MICHAELSON, I.A.: Hyperactivity and brain catecholamines in lead-exposed developing rats. Science 182 (1973) 1022.Google Scholar
  41. 40.
    SCHIBECI, A. and MOUW, D.: unpublished data.Google Scholar
  42. 41.
    SECCHI, G.C. and ALESSIO, L.: Ricerche Sul meccanismo d’inibizione della (Na+ + K+)-ATPasi eritocitaria ad opera del piombo. Med. Lavaro. 60 (1969) 670–673.Google Scholar
  43. 42.
    SECCHI, G.C., ALESSION, L. and GERVASINI, N.: Ricerche sulla (Na+ + K+)-ATPasi renale nella intossicazione saturnina sperimentale. Med. Lavaro. 60 (1969) 674–677.Google Scholar
  44. 43.
    SIEGEL, G.J. and ALBERS, R.W.: Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. IV. Modification of response to sodium and potassium by arsenite plus 2,3-dimercaptopropanol. J. Biol. Chem. 242 (1967) 4972.PubMedGoogle Scholar
  45. 44.
    SIEGEL, G.J., KOVAL, G.J. and ALBERS, R.W.: Sodium-potassium-activated adenosine triphosphatase YI. Characterization of the phosphoprotein formed from orthophosphate in the presence of ouabain. J. Biol. Chem. 244 (1969) 3264–3269.PubMedGoogle Scholar
  46. 45.
    SIEGEL, G.J. and FOGT, S.K.: Inhibition of electroplax (Na+ + K+)-adenosine-triphosphatase by lead ion. Pharmacol. l6 (1974) 294.Google Scholar
  47. 46.
    SIEGEL, G.J. and FOGT, S.K.: Lead ion activates phosphorylation of electroplax (Na,K)-ATPase in the absence of sodium ion. Arch. Biochem. Biophys. 174 (1976) 744–746.PubMedCrossRefGoogle Scholar
  48. 47.
    SIEGEL, G.J. and EOGT, S.K.: Effects of lead ion on brain microsomes: inhibition of cation transport ATPase and stimulation of phosphorylation. Trans. Am. Neurol. Ass. in press.Google Scholar
  49. 48.
    SIEGEL, G.J. and GOODWIN, B.B.: Sodium-potassium-activated adenosine-triphosphatase. Potassium-regulation of enzyme phosphorylation. Sodium-stimulated, potassium-inhibited uridine triphosphate hydrolysis. J. Biol. Chem. 247 (1972) 3630–3637.PubMedGoogle Scholar
  50. 49.
    SKOU, J.C.: The (Na+ + K+)-activated enzyme system and its relationship to transport of sodium and potassium. Quart. Rev. Biophys. 7 (1975) 401.CrossRefGoogle Scholar
  51. 50.
    STEIN, W.D. et al: A model for active transport of sodium and potassium ions as mediated by a tetrameric enzyme. Proc. Nat. Acad. Sci. USA 70(1) (1973) 275–278.PubMedCrossRefGoogle Scholar
  52. 51.
    THOMAS, J.A. and THOMAS, I.M.: The pathogenesis of lead encephalopathy. Indian J. Med. Res. 62 (1974) 36–41.Google Scholar
  53. 52.
    TICE, L.W.: Lead-adenosine triphosphate complexes in adenosine triphosphatase histochemistry. J. Histochem. Cytochem. 17 (1969) 85–94.PubMedCrossRefGoogle Scholar
  54. 53.
    VALLEE, B.L. and COLEMAN, J.E.: Metal coordination and enzyme action, vol 12, pp. 165–235, Comprehensive Biochemistry (Florkin, M. and Stotz, E.H. Eds.). Elsevier. Amsterdam (1964).Google Scholar
  55. 54.
    VALLEE, B.L. and ULMER, D.D.: Biochemical effects of mercury, cadmium and lead. Ann. Rev. Biochem. 41 (1974) 91–128.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • George J. Siegel
    • 1
  • Suzanne K. Fogt
    • 1
  • Mary Jane Hurley
    • 1
  1. 1.Neurology Research Laboratory, Neurology DepartmentUniversity of Michigan Medical CenterAnn ArborUSA

Personalised recommendations