On the Nature of the Transport Pathway Used for Ca-Dependent K Movement in Human Red Blood Cells

  • Joseph F. Hoffman
  • Ronald M. Blum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 84)


This paper is concerned with the mechanism by which energy-depleted human red cells become permeable to K (but not to Na) when they are exposed to Ca. In an attempt to distinguish a diffusion from a mediated process competitive type effects of different ions and their sidedness of action on K transport are considered as well as the action of certain transport inhibitors. While the nature of the interactions implies the involvement of a mediated process (perhaps an altered form of the Na:K pump apparatus) more direct evidence will be needed to make a definitive assessment.


Hypertonic Medium Depletion Time Human Erythrocyte Ghost Thin Lipid Membrane Pump Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ADRIAN, R.H.: Rectification in muscle membrane, Ch. 8, Prog, in Biophys. and Molec. Biol. (Butler, J.A.V., Noble, D. Eds.). Pergamon Press. New York 19 (1961) 341.Google Scholar
  2. 2.
    ASTRUP, J.: Na and K in human red cells. Variations among centrifuged cells. Scand. J. Lab. and Clin. Invest. 33 (1974) 231.CrossRefGoogle Scholar
  3. 3.
    BLUM, R.M. and HOFFMAN, J.F.: The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells. J. Memb. Biol. 6 (1971) 315.CrossRefGoogle Scholar
  4. 4.
    BLUM, R.M. and HOFFMAN, J.F.: Ca-induced K transport in human red cells: Localization of the Ca-sensitive site to the inside of the membrane. Biochem. Biophys. Res. Comm. 25 (1972) 1146.CrossRefGoogle Scholar
  5. 5.
    BLUM, R.M. and HOFFMAN, J.F.: Unpublished results.Google Scholar
  6. 6.
    BRAZY, P.C. and GUNN, R.B.: Furosemide inhibition of chloride transport in human red blood cells. Physiologist 18 (1975) 151.Google Scholar
  7. 7.
    CHA, Y.N., SHIN, B.C., and LEE, K.S.: Active uptake of Ca and Ca-activated MgATPase in red cell membrane fragments. J. Gen. Physiol. 57 (1971) 202.PubMedCrossRefGoogle Scholar
  8. 8.
    COLOMBE, B.W. and MACEY, R.I.: Effects of calicum on potassium and water transport in human erythrocyte ghosts. Biochim. Biophys. Acta. 363 (1974) 226.PubMedCrossRefGoogle Scholar
  9. 9.
    EKMAN, A., MANNINEN, V. and SALMINEN, S.: Ion movements in red cells treated with propranolol. Acta Physiol. Scand. 75 (1969) 333.Google Scholar
  10. 10.
    FERRIRA, H.G. and LEW, V.L.: Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature. 259 (1976) 47.CrossRefGoogle Scholar
  11. 12.
    GARDOS, G.: The role of calcium in the potassium permeability of human erythrocytes. Physiol. Sci. Acad. Hung. 15 (1959) 121.Google Scholar
  12. 13.
    GARDOS, G.: The permeability of human erythrocytes to potassium. Acta. Physiol. Sci. Acad. Hung. 10 (1956) 185.Google Scholar
  13. 14.
    GARDOS, G., SZASZ, I. and SARKADI, B.: Mechanism of Ca-dependent K-transport in human red cells. Biomembranes: Structure and Function (Gardos, G. and SZASK, I. Eds). North Holland, Amsterdam, FEBS Proc. 35 (1975) 167.Google Scholar
  14. 15.
    GARRAHAN, P.J. and GARAY, R.P.: A kinetic study of the Na pump in red cells. Its relevance to the mechanism of active transport. Annals New York Acad. Sci. 242 (1974) 445.CrossRefGoogle Scholar
  15. 16.
    GLYNN, I.M. and WARNER, A.E.: Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drugs antiarrhythmic effect. Brit. J. Pharmac. 44 (1972) 271.Google Scholar
  16. 17.
    GLYNN, I.M. and HOFFMAN, J.F.: Nucleotide requirements for sodium-sodium exchange catalyzed by the sodium pump in human red cells. J. Physiol. 218 (1971) 239.PubMedGoogle Scholar
  17. 18.
    GRIGARZIK, H. and PASSOW, H.: Versuche zum mechanismus der bleiwirkung aul die kalium-permeabilitat roter blutkorperchen. Pflugers Archiv. 267, (1958) 73.PubMedCrossRefGoogle Scholar
  18. 18a.
    HARDY, JR. M.A. and LEW, V.L.: Captacion de calcio y flujo de potasio en eritrocitos humanos depletados. Proc. XVI Meeting Soc. Argentina Invest. Clin. Cordoba, Argentina (1971) 199.Google Scholar
  19. 19.
    HOFFMAN, J.F.: Cation transport and structure of the red cell plasma membrane. Circulation. 26 (1962) 1201.Google Scholar
  20. 20.
    HOFFMAN, J.F.: The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41 (1966) 666.PubMedCrossRefGoogle Scholar
  21. 21.
    HOFFMAN, J.F. and KNAUF, P.A.: The mechanism of the increased K transport induced by Ca in human red blood cells. Erythrocytes, thrombocytes and leukocytes (Gerlach, E., Moser, K., Deutsch, E., and Wilmanns, W. Eds.). Georg Thieme. Stuttgart (1973) 66.Google Scholar
  22. 22.
    HOFFMAN, J.F. and PROVERBIO, F.: Membrane ATP and the functional organization of the red cell Na:K pump. Annals New York Acad. Sci. 242 (1974) 459.CrossRefGoogle Scholar
  23. 23.
    KNAUF, P.A., PROVERBIO, F. and HOFFMAN, J.F.: Electro-phoretic separation of different phosphoproteins associated with Ca-ATPase and Na, K-ATPase in human red cell ghosts. J. Gen. Physiol. 63 (1974) 324.PubMedCrossRefGoogle Scholar
  24. 24.
    KNAUF, P.A., RIORDAN, J.R., SCHUMANN, B., WOOD-GUTH, I., and PASSOW, H.: Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts. J. Memb. Biol. 25 (1975) 1.CrossRefGoogle Scholar
  25. 25.
    KNIGHT, A.B. and WELT, L.G.: Intracellular potassium. A determinant of the sodium-potassium pump rate. J. Gen. Physiol. 63 (1974) 351.PubMedCrossRefGoogle Scholar
  26. 26.
    KREGENOW, F. and HOFFMAN, J.F.: Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells. J. Gen. Physiol. 60 (1972) 406.PubMedCrossRefGoogle Scholar
  27. 27.
    LEW, V.L.: Effect of ouabain on the Ca-dependent increase in K permeability in depleted guinea pig red cells. Biochim. Biophys. Acta 249 (1971) 236.PubMedCrossRefGoogle Scholar
  28. 28.
    LEW, V.L.: On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes. Comparative Biochemistry and Physiology of Transport (Bolis, L., Block, K., Luria, S.E., and Lynen, F. Eds.). North-Holland, Amsterdam. (1974) 310.Google Scholar
  29. 29.
    PASSOW, H.: Zusammenwirken von Membranstruktur und Zellstrffwechsel bei Regulierung der Ionenpermeabilität roten Blutkörperchen. Biochemie Des Aktiven Transports. Colloq. Ges. Physiol. Chem. Mosbach/Baden, Springer-Verlag, Berlin (1961) 54.Google Scholar
  30. 30.
    PASSOW, H.: Metabolic control of passive cation permeability in human red cells. Cell Surface Interactions (Brown, H.D. Ed.). Scholaris Library, New York (1963) 57.Google Scholar
  31. 31.
    PASSOW, H.: The red blood cell: Penetration, distribution and toxic action of heavy metals. Effects of Metals on Cells, Subcellular Elements and Macromolecules (Maniloff, J., Coleman, J.R. and Miller, M. Eds.). pp. 291–340. charles C. Thomas, Springfield, Ill. (1970).Google Scholar
  32. 32.
    PLISHKER, G. and GITELMAN, H.J.: Calcium transport in intact human erythrocytes. J. Gen. Physiol. 68 (1976) 29.PubMedCrossRefGoogle Scholar
  33. 33.
    PONDER, E.: Volume changes, ion exchanges, and fragilities of human red cells in solutions of the chlorides of the alkaline earths. J. Gen. Physiol. 36 (1953) 767.PubMedCrossRefGoogle Scholar
  34. 34.
    PORZIG, H.: Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts. J. Physiol. 249 (1975) 27.PubMedGoogle Scholar
  35. 35.
    REED, P.W.: Effects of the divalent cation ionophore A23187 on K permeability of rat erythrocytes. J. Biol. Chern. 25 (1976) 3489.Google Scholar
  36. 36.
    RIORDAN, J.R. and PASSOW, H.: The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts. Comparative Physiology (Bolis, L., Schmidt-Nielsen, K., and Mandrell, S.H.P. Eds.). North-Holland, Amsterdam (1973) 543.Google Scholar
  37. 37.
    ROMERO, P.J. and WHITTAM, R.: The control by internal calcium of membrane permeability to sodium and potassium. J. Physiol. 214 (1971) 481.PubMedGoogle Scholar
  38. 38.
    SACHS, J.R. and CONRAD, M.E.: Effect of tetraethylammon-ium on the active cation transport system of the red blood cell. Am. J. Physiol. 215 (1968) 795.PubMedGoogle Scholar
  39. 39.
    SACHS, J.R.: Sodium movements in the human red blood cell. J. Gen. Physiol. 56 (1970) 322.PubMedCrossRefGoogle Scholar
  40. 40.
    SACHS, J.R.: Ouabain-insensi tive sodium movements in the human red blood cell. J. Gen. Physiol. 57 (1971) 259.PubMedCrossRefGoogle Scholar
  41. 41.
    SCHATZMANN, H.J.: ATP dependent Ca extrusion from human red cells. Experientia. 22 (1966) 364.PubMedCrossRefGoogle Scholar
  42. 42.
    SCHATZMANN, H.J. and VINCENZI, F.F.: Calcium movements across the membrane of human red cells. J. Physiol. 201 (1969) 369.PubMedGoogle Scholar
  43. 43.
    SIMONS, T.J.B.: The preparation of human red cell ghosts containing calcium buffers. J. Physiol. 256 (1976) 209.PubMedGoogle Scholar
  44. 44.
    SIMONS, T.J.B.: Calcium-dependent potassium exchange in human red cell ghosts. J. Physiol. 256 (1976) 227.PubMedGoogle Scholar
  45. 45.
    WHITTAM, R., WHEELER, K.P. and BLAKE, A.: Oligomycin and active transport reactions in cell membranes. Nature. 203 (1964) 720.PubMedCrossRefGoogle Scholar
  46. 46.
    WHITTAM, R.: Control of membrane permeability to potassium in red blood cells. Nature. 219 (1968) 610.PubMedCrossRefGoogle Scholar
  47. 47.
    WILBRANDT, W.: A relation between the permeability of the red cell and its metabolism. Trans. Farad. Soc. 33 (1937) 956.CrossRefGoogle Scholar
  48. 48.
    This work was supported by USPHS grants HL 09906 and AM 17433.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Joseph F. Hoffman
    • 1
  • Ronald M. Blum
    • 1
  1. 1.Department of Physiology, School of MedicineYale UniversityNew HavenUSA

Personalised recommendations