Regulation of the Δ9 Desaturation

  • O. Mercuri
  • M. E. De Tomás
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 83)


Rat liver microsomes have the capacity to convert stearoyl CoA to oleyl CoA by an enzymatic reaction requiring both oxygen and the integrity of the NADH-linked microsomal electron transport chain of which Δ9 desaturase is the terminal component (Wilson et al., 1967).


Stearic Acid Desaturase Activity Desaturase Enzyme Isolate Liver Cell Fatty Acid Synthetase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry, M. N. (1974) Methods in Enzymology. Vol. Xxxii. Part B. (Fleischer S. & Packer L., ed.) pp. 625–632. Academic Press, London-New York.Google Scholar
  2. Bruckdorfer, K. R., Khan, H. I., and Yudkin, J. (1972) Biochem. J. 129, 439–446.PubMedGoogle Scholar
  3. De Tomás, M. E. and Brenner, R. R. (1964) Anal. Assoc. Quím. Arg. 52, 253–260.Google Scholar
  4. De Tomás, M. E., Peluffo, R. O., and Mercuri, O. (1973) Biochim. Biophys. Acta 306, 149–155.PubMedGoogle Scholar
  5. De Tomás, M. E., Mercuri, O., and Peluffo, R. O. (1975) Lipids 10, 360–362.PubMedCrossRefGoogle Scholar
  6. Elovson, J. (1965) Biochim. Biophys. Acta 106, 291–303.PubMedGoogle Scholar
  7. Folch-Pi, J. I., Lees, M., and Sloan-Stanley, G. H. (1957) J. Biol. Chem. 226, 479–509.Google Scholar
  8. Gellhorn, A. and Benjamin, W. (1966) Biochim. Biophys. Acta 116, 460–466.PubMedGoogle Scholar
  9. Holloway, C. T. and Holloway, P. W. (1974) Lipids 9, 196–200.PubMedCrossRefGoogle Scholar
  10. Howard, C. F. Jr. and Lowenstein, J. M. (1967) Biochim. Biophys. Acta 84, 226–228.Google Scholar
  11. Mercuri, O., Peluffo, R. O., and De Tomás, M. E. (1974) Biochim. Biophys, Acta 369, 264–268.Google Scholar
  12. Oshlno, N., Imai, Y., and Sato R. (1966) Biochim. Biophys. Acta 128, 13–28.Google Scholar
  13. Oshino, N. and Sato, R. (1972) Arch. Biochem. Biophys. 149, 369–377.PubMedCrossRefGoogle Scholar
  14. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., and Redline, R. (1974) Proc. Nat. Acad. Sci. U. S. A. 71, 4565–4569.CrossRefGoogle Scholar
  15. Takeda, Y., Inoue, H., Honjo, H., Tanioka, H., and Daikuhara, Y. (1967) Biochim. Biophys. Acta 136, 214–222.PubMedCrossRefGoogle Scholar
  16. Uchiyama, M., Nakagawa, M., and Okui, S. (1967) J. Biochem. 62, 1–6.PubMedGoogle Scholar
  17. Volpe, J. J. and Vagelos, R. P. (1974) Proc. Nat. Acad. Sci. U. S. A. 71, 889–893.CrossRefGoogle Scholar
  18. Waddell, M. and Gallon, H. J. (1973) J. Clin. Invest. 52, 2725–2731.PubMedCrossRefGoogle Scholar
  19. Wilson, A. C., Wakil, S. J., and Joshi, V. C. (1976) Arch. Biochem. Biophys. 173, 154–161.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • O. Mercuri
    • 1
    • 2
  • M. E. De Tomás
    • 1
    • 2
  1. 1.Cátedra de Bioquímica, Instituto de Fisiología Facultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Cientificas y TécnicasArgentina

Personalised recommendations