Advertisement

Muscarinic Cholinergic Stimulation of Phosphatidyl Inositol Turnover in the CNS

  • O. Canessa de Scarnatti
  • M. Sato
  • E. De Robertis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 83)

Abstract

A large variety of cells undergo a marked increase in turnover of PI under the influence of different physiological and pharmacological stimuli (for reviews, see Lapetina & Michell, 1973, Michell, 1975). The features in common of the so-called PI effect are (1) it is probably mediated by receptor sites at the cell surface and (2) it involves only the phosphorylinositol moiety of PI.

Keywords

Muscarinic Receptor Caudate Nucleus Specific Radioactivity Ethanolamine Phosphatidyl Synaptosomal Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canessa de Scarnatti O. E. & Lapetina E. G. (1974) Biochem. Biophys. Acta 360, 298–305Google Scholar
  2. Chen P. S., Toribara T. Y. & Warner H. (1956) Analyt. Chem. 28, 1756–1758CrossRefGoogle Scholar
  3. Bleasdale J. E. & Hawthorne J. N. (1974) Biochem. Soc. Trans. 2, 261–262Google Scholar
  4. De Robertis E., Fiszer S. & Soto E. F. (1967) Science 158, 228–229Google Scholar
  5. De Robertis E., Fiszer S., Pasquini J. & Soto E. F. (1969a) J. Neurobiol. 1, 41–52PubMedCrossRefGoogle Scholar
  6. De Robertis E. (1975) in Synaptic Receptors, Isolation and Molecular Biology, Dekker, New YorkGoogle Scholar
  7. Durrell J. & Sodd M. A. (1966) J. Neurochem. 13, 487–491CrossRefGoogle Scholar
  8. Folch-Pi J., Lees M. & Sloane-Stanley G. H. (1957) J. Biol. Chem. 226, 497–509Google Scholar
  9. Hiley G. R. & Burgen A. S. V. (1974) J. Neurochem. 22, 159–163PubMedCrossRefGoogle Scholar
  10. Hokin M. R. & Hokin L. E. (1955) Biochim. Biophys. Acta 18, 102–110PubMedCrossRefGoogle Scholar
  11. Hokin L. E. & Hokin M. R. (1958) J. Biol. Chem. 233, 822–826PubMedGoogle Scholar
  12. Jones L. M. & Michell R. H. (1974) Biochem. J. 142, 583–690PubMedGoogle Scholar
  13. Kai M. & Hawthorne J. N. (1966) Biochem. J. 98, 62–67PubMedGoogle Scholar
  14. Lapetina E. G. & Michell R. H. (1972) Biochem. J. 1226, 1141–1147Google Scholar
  15. Lapetina E. G. & Michell R. H. (1973) Febs Lett. 31, 1–10PubMedCrossRefGoogle Scholar
  16. Larrabee M. G. & Leicht W. S. (1965) J. Neurochem. 12, 1–13PubMedCrossRefGoogle Scholar
  17. Lunt G. G. & Lapetina E. G. (1970) Brain Res. 18, 451–459PubMedCrossRefGoogle Scholar
  18. Lunt G. G., Canessa O. E. & De Robertis E. (1971) Nature New Biol. 230, 187–190PubMedCrossRefGoogle Scholar
  19. Michell R. H. (1975) Biochim. Biophys. Acta 415, 81–147PubMedGoogle Scholar
  20. Pumphrey A. M. (1969) Biochem. J. 112, 61–70PubMedGoogle Scholar
  21. Redman C. M. & Hokin M. R. (1964) J. Neurochem. 11, 155–163PubMedCrossRefGoogle Scholar
  22. Saraceno H. & De Robertis E. (1976) Biochem. Biophys. Res. Commun. 69, 555–565PubMedCrossRefGoogle Scholar
  23. Schacht J. & Agranoff B. W. (1973) Biochem. Biophys. Res. Commun. 50, 934–991PubMedCrossRefGoogle Scholar
  24. Sleifer L. S. & Eldefrawi M. E. (1974) Neuropharmacol. 13, 53–63CrossRefGoogle Scholar
  25. Skipski V. P., Petersen R. F. & Barclay M. (1964) Biochem. J. 90, 374–378PubMedGoogle Scholar
  26. Yagihara Y. & Hawthorne J. N. (1972) J. Neurochem. 19, 355–367PubMedCrossRefGoogle Scholar
  27. Yamamura M. I., Kuhar M. J., Greenberg D. & Snyder S. H. (1974) Brain Res. 66, 541–546CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • O. Canessa de Scarnatti
    • 1
  • M. Sato
    • 1
  • E. De Robertis
    • 1
  1. 1.Instituto de Biología CelularFacultad de Medicina Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations