Metabolism and Role of Phosphatidylinositol in Acetylcholinestimulated Membrane Function

  • M. Hokin-Neaverson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 83)


I should like to discuss some of the work from this laboratory on the nature and function of stimulus-induced changes in phosphatidylinositol metabolism. Such changes have long been known to occur in many types of cells in response to stimulation by some neurotransmitters, hormones, and various other agents. In the early work, the changes were characterized as an increased turnover of the hydrophilic part of the phosphatidylinositol moleculephosphate and inositol — without a concomitant increase in the turnover of the hydrophobic, diglyceride part of the molecule. Tissues which show such a response include, among others, neural tissue and some exocrine and endocrine glands.


Rough Endoplasmic Reticulum Phosphatidic Acid Exocrine Pancreas Salt Gland Zymogen Granule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker R.R. & Thompson W. (1972) Biochim. Biophys. Acta 270, 489–503PubMedGoogle Scholar
  2. Banschbach M. W., Geison R. L. & Hokin-Neaverson M. (1974) Biochem. Biophys. Res. Commun. 58, 714–718PubMedCrossRefGoogle Scholar
  3. Dawson R. M. C., Freinkel N., Jungalwala F. B. & Clarke N. (1971) Biochem J. 122, 605–607PubMedGoogle Scholar
  4. Doyle W. L. (1960) Exptl. Cell Res. 21, 386–393PubMedCrossRefGoogle Scholar
  5. Durell J. & Sodd M. A. (1966) J. Neurochem. 13, 487–491PubMedCrossRefGoogle Scholar
  6. FÄnge R., Schmidt-Nielsen K. & Robinson M. (1958) Amer. J. Physiol. 195, 321–326PubMedGoogle Scholar
  7. Fawcett D. W. (1962) Circulation 26, 1105–1125PubMedCrossRefGoogle Scholar
  8. Geison R. L., Banschbach M. W., Sadeghian K. & Hokin-Neaverson M. (1976) Biochem. Biophys. Res. Commun. 68, 343–349PubMedCrossRefGoogle Scholar
  9. Harper A. A. & Raper H. S. (1943) J. Physiol. 102, 115–125PubMedGoogle Scholar
  10. Harris D. W. & Hokin-Neaverson M. (1977) Federation Proc. (In press)Google Scholar
  11. Hokin L. E. & Hokin M. R. (1958) J. Biol. Chem. 233, 822–826PubMedGoogle Scholar
  12. Hokin L. E. & Hokin M. R. (1960) J. Gen. Physiol. 44, 61–85PubMedCrossRefGoogle Scholar
  13. Hokin L. E. & Hokin M. R. (1963) Federation Proc. 22, 8–18Google Scholar
  14. Hokin L. E. (1966) J. Neurochem. 13, 179–184PubMedCrossRefGoogle Scholar
  15. Hokin M. R., Hokin L. E. & Shelp W. D. (1960) J. Gen. Physiol. 44, 217–226PubMedCrossRefGoogle Scholar
  16. Hokin M. R. & Hokin L. E. (1964) in Metabolism and Significance of Lipids. (Dawson R.M.C. & Rhodes D.N., eds.) pp. 423–434, John Wiley, London.Google Scholar
  17. Hokin M. R. (1965) in Funktionelle und morphologische Organisation der Zelle; Sekretion und Excretion. (Wohlfarth-Bottermann, K.E., ed) pp. 283–288, Springer-Verlag, Berlin, Heidelberg and New York.Google Scholar
  18. Hokin M. R. (1967) Neurosci. Res. Prog. Bull. 5, 32–36Google Scholar
  19. Hokin M. R. & Hokin L. E. (1967) J. Gen. Physiol. 50, 793–811PubMedCrossRefGoogle Scholar
  20. Hokin M. R. (1968a) Arch. Biochem. Biophys. 124, 271–279PubMedCrossRefGoogle Scholar
  21. Hokin M. R. (1968b) Arch. Biochem. Biophys. 124, 280–284PubMedCrossRefGoogle Scholar
  22. Hokin M. R. (1974) in Secretory Mechanisms of Exocrine Glands. (Thorn N.A. & Petersen O.N., eds.) pp. 101–112, Munksgaard, Copenhagen.Google Scholar
  23. Hokin-Neaverson M. (1974) Biochem. Biophys. Res. Commun. 58, 763–768PubMedCrossRefGoogle Scholar
  24. Hokin-Neaverson M., Sadeghian K., Majumder A. L. & Eisenberg F. (1975) Biochem. Biophys. Res. Commun. 67, 1537–1544PubMedCrossRefGoogle Scholar
  25. Holub B. J. & Kuksis A. (1971) J. Lipid Res. 12, 699–705PubMedGoogle Scholar
  26. Jamieson J. D. & Palade G. E. (1967a) J. Cell Biol. 34, 577–596PubMedCrossRefGoogle Scholar
  27. Jamieson J. D. & Palade G. E. (1967b) J. Cell Biol. 34, 597–615PubMedCrossRefGoogle Scholar
  28. Jones L. M. & Michell R. H. (1974) Biochem. J. 142, 583–590PubMedGoogle Scholar
  29. Kemp P., Hubscher G. & Hawthorne J. N. (1961) Biochem. J. 79, 193–200PubMedGoogle Scholar
  30. Komnick H. (1962) Protoplasma 55, 414–418CrossRefGoogle Scholar
  31. Komnick H. & Kniprath E. (1970) Cytobiologie 1, 228–247Google Scholar
  32. Larrabee M. G. & Leicht W. S. (1965) J. Neurochem. 12, 1–13PubMedCrossRefGoogle Scholar
  33. Meldolesi J., Jamieson J. D. & Palade G. E. (1971a) J. Cell Biol. 49, 109–129PubMedCrossRefGoogle Scholar
  34. Meldolesi J., Jamieson J. D. & Palade G. E. (1971b) J. Cell Biol. 49, 130–149PubMedCrossRefGoogle Scholar
  35. Michell R. H. & Lapetina E. G. (1972) Nature 240, 258–260Google Scholar
  36. Michell R. H. (1975) Biochim. Biophys. Acta 415, 81–147PubMedGoogle Scholar
  37. Petzold G. L. & Agranoff B. W. (1965) Federation Proc. 24, 426Google Scholar
  38. Raetz C. R. H., Hirschberg C. B., Dowhan W., Wickner W. T. & Kennedy E. P. (1972) J. Biol, Chem. 247, 2245–2247Google Scholar
  39. Saito M. & Kanfer J. (1975) Arch. Biochem. Biophys. 169, 318–323PubMedCrossRefGoogle Scholar
  40. Schacht J. & Agranoff B. W. (1972) J. Biol. Chem. 247, 771–777PubMedGoogle Scholar
  41. Schacht J. & Agranoff B. W. (1973) Biochem. Biophys. Res. Commun. 50, 934–941PubMedCrossRefGoogle Scholar
  42. Schacht J. & Agranoff B. W. (1974a) J. Biol. Chem. 249, 1551–1557PubMedGoogle Scholar
  43. Schacht J. & Agranoff B. W. (1974b) in Neurochemistry of Cholinergic Receptors. (de Robertis, E. & Schacht, J., eds.) pp. 121–129, Raven Press, New York.Google Scholar
  44. Thompson W. & MacDonald G. (1975) J. Biol. Chem. 250, 6779–6785PubMedGoogle Scholar
  45. Thompson W. & MacDonald G. (1976) Eur. J. Biochem. 65, 107–111PubMedCrossRefGoogle Scholar
  46. Yagihara Y. & Hawthorne J. N. (1972) J. Neurochem. 19, 355–367PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. Hokin-Neaverson
    • 1
  1. 1.Departments of Psychiatry and Physiological ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations