Structural Specificity of Gangliosides

  • H. Wiegandt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 83)


Like the molecules of other amphipathic lipids, such as phospholipids, which constitute the building blocks of biological membranes, the ganglioside molecule consists of a lipophilic part and a hydrophilic part, i. e., a ceramide and a sialo-oligosaccharide. As compared to phospholipids, the gangliosides show much more variation in their polar head group region than in their hydrocarbon chains. (Wiegandt, 1968; 1971; 1973). In recent times increasingly observations are reported that point towards the potential biological significances of the gangliosides in view of the large diversity of highly specific interactions possible for their carbohydrate residues. Thus gangliosides are implicated in the interactions of hormones (Wolley & Gommie, 1965; Mullin et al., 1976), lectins (Surola et al., 1975), viruses (Haywood, 1974) and interferon (Besancon et al., 1976). The longest known instance of a specific binding of ganglioside dates back to the observation made in 1898 by Wassermann & Takaki that brain tissue could fix tetanus toxin. This phenomenon was later shown by van Heyningen (1974) to be due to ganglioside, which may fix the toxin without however inhibiting its in vivo toxicity. More recently other bacterial toxins were found also to bind specifically to various gangliosides and it was postulated that the sialoglycolipids may actually constitute the natural cell membrane receptors for the toxins. Cholera toxin is fixed by ganglioside II3NeuAc-GgOse4-Cer (van Heyningen, 1974; Stärk, et al., 1974). Escherichia coli toxin can be prevented from entering polyacrylamide gel in electrophoresis when it is in the presence of the trisialoganglioside IV3 NeuAc-, II3 (←2αNeuAc8)2 GgOse4-Cer (Stärk, J., Sattler, J., and Wiegandt, H., unpublished observation). Recently Kato and Naiki (1976) reported that staphylococcus toxin was bound by ganglioside IV3NeuAc-LnOse4-Cer. The structure of the latter ganglioside, i. e., NeuAcα2→3Galβ1→4GlcNAcβ1→ 3Galβ1→4Glcβ1→cer (Wiegandt, 1973), is in its terminal monosaccharide residues identical to sialo-oligosaccharide moieties found frequently with glycoproteins, in particular in those of the human plasma (Kato & Naiki, 1976).


Cholera Toxin Scatchard Plot Tetanus Toxin High Molecular Weight Complex Protective Colloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besancon, F., Ankel, H. & Basu, S. (1976) Nature 259, 576–578.PubMedCrossRefGoogle Scholar
  2. Haywood, A. M. (1974) J. Mol. Biol. 87, 625–628.PubMedCrossRefGoogle Scholar
  3. Helting, T. B. & Zwisler, O. (1976) J. Biol. Chem. (in press).Google Scholar
  4. Helting, T. B. Zwisler, O. & Wiegandt, H. (1976) J. Biol. Chem. (in press).Google Scholar
  5. Hill, A. J. (1913) Biochem. J. 7, 471.PubMedGoogle Scholar
  6. Holmgren, J., Manson, J. E. & Svennerholm, L. (1974) Med. Biol. 52, 229–233.PubMedGoogle Scholar
  7. Kato, J. & Naiki, M. (1976) Infection and Immunity 13, 289–291.PubMedGoogle Scholar
  8. Kimberg, D. V., Field, M., Johnson, J., Hendersson, A. & Gershon, E. (1971) Clin. Invest. 50, 1218–1230.CrossRefGoogle Scholar
  9. Mullin, B. R., Aloj, S. M., Fishman, P. H., Lee, G., Kohn, L.D. & Brady, R. O. (1976) Proc. Natl. Acad. Sci. 73, 1679–1683.PubMedCrossRefGoogle Scholar
  10. Olsnes, S., Refsnes, K. & Pihl, A. (1974) Nature 249, 627–631.PubMedCrossRefGoogle Scholar
  11. Pappenheimer, Jr. A. M. & Gill, D. M. (1973) Science 182, 353–364.PubMedCrossRefGoogle Scholar
  12. Sattler, J., Schwarzmann, G., Ziegler, W. & Wiegandt, H. (1976) Hoppe-Seyler’s Z. Physiol. Chem. submitted.Google Scholar
  13. Scatchard, G. (1949) Ann. N. Y. Acad. Sci. 51, 660–672.CrossRefGoogle Scholar
  14. Schenkein, I., Green, R. F., Santos, D. S. & Maas, W. K. (1976) Infection and Immunity 13, 1710–1720.PubMedGoogle Scholar
  15. Sharp, G. W. G.& Hynie, S. (1971) Nature 229, 266–269.PubMedCrossRefGoogle Scholar
  16. Stärk, J., Ronneberger, H. J., Wiegandt, H. & Ziegler, W. (1974) Eur. J. Biochem. 48, 103–110.CrossRefGoogle Scholar
  17. Surola, A., Bachhawat, B. K. & Padder, S. K. (1975) Nature 257, 802–804.CrossRefGoogle Scholar
  18. Swaminathan, N. & Aladjem, F. (1976) Biochemistry 15, 1516–1522.PubMedCrossRefGoogle Scholar
  19. Van Heyningen, W. E. (1974) Nature 249, 415–417.CrossRefGoogle Scholar
  20. Van Heyningen, W. E. & Miller, P. (1961) J. Gen. Microbiol. 24, 107–119.CrossRefGoogle Scholar
  21. Vassermann, A. & Takaki, T. (1898) Berl. Klin, Wschr. 35, 5.Google Scholar
  22. Wiegandt, H. (1968) Ang. Chem. Int. Edt. 7, 87–96.CrossRefGoogle Scholar
  23. Wiegandt, H. (1971) Adv. Lipid Res. 9, 249–289.Google Scholar
  24. Wiegandt, H. (1973) Hoppe-Seyler’s Z. Physiol. Chem. 354, 1049–1056.PubMedCrossRefGoogle Scholar
  25. Wiegandt, H. & Ziegler, W. (1974) Hoppe-Seyler’ s Z. Physiol. Chem, 355, 11–18CrossRefGoogle Scholar
  26. Wiegandt, H. Ziegler, W., Staerk, J., Krans, Th., Ronneberger, H. J., Zilg, H., Karlsson, K. A. & Samuelsson, B. E. (1976) Hoppe-Seyler’s Z. Physiol. Chem. (in press)Google Scholar
  27. Wolley, D. W. & Gommie, B. W. (1965) Proc. Natl. Acad. Sci. 53, 959–963.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H. Wiegandt
    • 1
  1. 1.Physiolog. Chem. Inst. UniversityMarburg/L.Germany

Personalised recommendations