The Role of Phospholipids in Na-K ATPase

  • J. J. H. H. M. de Pont
  • S. L. Bonting
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 83)


It has been known for a long time that lipids present in the plasma membrane influence the activity of the Na-K ATPase system. Treatment of Na-K ATPase preparations with detergents, phospholipases and organic solvents leads to partial or complete inactivation of the enzyme activity (for a recent review see Kimelberg, 1976). Moreover Arrhenius plots for the Na-K ATPase activity show a marked discontinuity around 20°C, which is generally attributed to a change in the solid/fluid transition of the fatty acid chains of the phospholipids. This interpretation has received support from studies of electron paramagnetic resonance spectra with spinlabeled fatty acids (Grisham and Barnett, 1973) and of fluorescent probe studies (Charnock and Bashford, 1975). Two questions remain: what is the molecular mechanism of this phospholipid effect, and is the interaction due to specific phospholipids?


Electron Paramagnetic Resonance Spectrum Fatty Acid Chain Control Preparation Individual Phospholipid Acidic Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Charnock, J. S. & Bashford, C. L. (1975) Mol. Pharmacol. 11, 766–774.PubMedGoogle Scholar
  2. Dowhan, W., Wickner, W. T. & Kennedy, E. P. (1974) J. Biol. Chem. 249, 3079–3084.PubMedGoogle Scholar
  3. Grisham, C. M. & Barnett, R. E. (1972) Biochim. Biophys. Acta 226, 613–624.CrossRefGoogle Scholar
  4. Grisham, C. M. & Barnett, R. E. (1973) Biochemistry 12, 2635–2637.PubMedCrossRefGoogle Scholar
  5. Hilden, S. & Hokin, L. E. (1976) Biochem. Biophys. Res. Commun. 69, 521–527.PubMedCrossRefGoogle Scholar
  6. Järnefelt, J. (1972) Biochim. Biophys. Acta 266, 91–96.PubMedCrossRefGoogle Scholar
  7. Jørgensen, P. L. (1974) Biochim. Biophys. Acta 356, 36–52.PubMedCrossRefGoogle Scholar
  8. Kanfer. J. & Kennedy, E. P. (1964) J. Biol. Chem. 239, 1720–1726.PubMedGoogle Scholar
  9. Kimelberg, H. K. (1976) Mol. Cell. Biochem. 10, 171–190.PubMedCrossRefGoogle Scholar
  10. Kimelberg, H. K. & Papahajopoulos, D. (1972) Biochim. Biophys. Acta 282, 277–292.PubMedCrossRefGoogle Scholar
  11. Noguchi, T. & Freed, S. (1971) Nature New Biology 230, 148–150.PubMedGoogle Scholar
  12. Papahadjopoulos, D. (1971) Biochim. Biophys. Acta 241, 254–259.PubMedCrossRefGoogle Scholar
  13. de Pont, J. J. H. H. M., van Prooyen-van Eeden, A. & Bonting, S. L. (1973) Biochim. Biophys. Acta 323, 487–494.PubMedCrossRefGoogle Scholar
  14. Racker, E. & Fisher, L. W. (1975) Biochem. Biophys. Res. Commun. 67, 1144–1150.PubMedCrossRefGoogle Scholar
  15. Walker, J. A. & Wheeler, K. P. (1975) Biochim. Biophys. Acta 394, 135–144.PubMedCrossRefGoogle Scholar
  16. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G. & Metcalfe, J. C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 622–626.PubMedCrossRefGoogle Scholar
  17. Zwaal, R. F. A., Roelofsen, B. & Colley, C. M. (1973) Biochim. Biophys. Acta 300, 159–182.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. J. H. H. M. de Pont
    • 1
  • S. L. Bonting
    • 1
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations