Advertisement

Specificity of Δ6 Desaturase — Effect of Chain Length and Number of Double Bonds

  • J. C. Castuma
  • R. R. Brenner
  • W. Kunau
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 83)

Abstract

Oleic, linoleic and α-linolenic acids are desaturated by the same microsomal enzyme called Δ6 desaturase since it introduces the double bond between carbons 6–7 (Brenner and Peluffo, 1966; Brenner, 1971; Inkpen et al, 1969; Brenner, 1974). This enzyme is different from the Δ5 desaturase that converts eicosa-8, 11-dienoic, eicosa-9, 11, 14-trienoic and eicosa-8, 11, 14, 17-tetraenoic acids to eicosa-5, 8, 11-trienoic, eicosa-5, 8, 11, 14-tetraenoic and eicosa-5, 8, 11, 14, 17-pentaenoic acids respectively. (Ninno et al, 1974; Alaniz et al, 1975; Gaspar et al, 1975). It is also different from the Δ9 desaturase (Brenner, 1971). The Δ6 desaturase recognizes the number of double bonds of the substrate since α-linolenate is desaturated faster than linoleate and this one faster than oleate (Brenner and Peluffo, 1966). However, it is not known yet the effect of the chain length of the acid on the activity of the enzyme.

Keywords

Double Bond Linoleic Acid Radiochemical Purity Unsaturated Acid Desaturation Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaniz M. J. T. de, Ponz G. & Brenner R. R. (1975) Acta Physiol. Latinoam. 25, 3–13Google Scholar
  2. Brenner R. R. (1971) Lipids. 6, 567–575PubMedCrossRefGoogle Scholar
  3. Brenner R. R. (1974) Mol. & Cell Biochem. 3, 41–52CrossRefGoogle Scholar
  4. Brenner R. R. & Peluffo R. O. (1966) J. Biol. Chem. 241 5213-5219Google Scholar
  5. Brett D., Howling D., Morris L. J. & James A. T. (1971) Arch. Biochem. Biophys. 143, 535–547PubMedCrossRefGoogle Scholar
  6. Castuma J. C., Catala A. & Brenner R. R. (1972) J. Lipid Res. 13, 783–789PubMedGoogle Scholar
  7. Castuma J. C., Catala A., Brenner R. R. & Christie W. W. (1974) Acta Physiol. Latinoam. 24, 31–39Google Scholar
  8. Do U. H. & Sprecher H. (1975) Arch. Biochem. Biophys. 171, 597–603.PubMedCrossRefGoogle Scholar
  9. Gaspar G., Alaniz M. J. T. de & Brenner R. R. (1975) Lipids. 10, 726–731PubMedCrossRefGoogle Scholar
  10. Inkpen C. A., Harris R. A. & Quackenbush F. W. (1969) J. Lipid Res. 10, 277–282PubMedGoogle Scholar
  11. Kornberg A. & Pricer W. E. (Jr) (1953) J. Biol. Chem. 204, 329–371PubMedGoogle Scholar
  12. Ninno R. E., Tørrengo M. A. P. de, Castuma J. C. & Brenner R. R. (1974) Biochim. Biophys. Acta 360, 124–133PubMedGoogle Scholar
  13. Peluffo R. O. & Brenner R. R. (1974) J. Nutrit. 104, 894–900PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. C. Castuma
    • 1
  • R. R. Brenner
    • 1
  • W. Kunau
    • 2
  1. 1.Cátedra de Bioquímica, Instituto de Fisiología, Facultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Ruhr-Universität BochumInstitute für Physiologische ChemieBochum-QuerenburgGermany

Personalised recommendations