Advertisement

Cerebral Oxygenation in Arterial Hypoxia

  • Bo K. Siesjö
  • Lars Borgström
  • Halldór Jóhannsson
  • Bengt Nilsson
  • Karin Norberg
  • Björn Quistorff
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 75)

Abstract

Pronounced increases in CBF occur in arterial hypoxia (see, for example Kety and Schmidt 1948, Cohen et al. 1967). The mechanisms of this hyperemia have never been clarified but it has been postulated that a decreased extracellular pH is responsible. The following evidence has been quoted in favour of this hypothesis. First, pronounced increases in CBF are observed in hypercapnia and hypoxia, conditions that are associated with cerebral acidosis. Second, in hypoxic hypoxia CBF increases when arterial PO2 is reduced below about 50 mm Hg (Courtice 1941, McDowall 1966, Kogure et al. 1970) and, at this degree of hypoxia, there is also accumulation of lactic acid in the tissue (Gurdjian et al. 1944, Siesjö and Nilsson 1971). Third, it has been reported that induced hypoglycemia, by limiting the supply of glucose for cerebral glycolysis, prevents the increase in CBF which otherwise occurs in hypoxia (Kogure et al. 1970).

Keywords

Cerebral Blood Flow Mean Arterial Blood Pressure Cerebral Oxygenation Acta Physiol Hypoxic Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachelard, H. S., L. D. Lewis, U. Pontén and B. K. Siesjö, Mechanisms activating glycolysis in the brain in arterial hypoxia. J. Neurochem. 1974. 22. 395–401.PubMedCrossRefGoogle Scholar
  2. 2.
    Borgström, L., H. Jóhannsson and B.K. Siesjö, The influence of acute normovolemic anemia on cerebral blood flow and oxygen consumption of anaesthetized rats. Acta physiol. scand. 1975. In press.Google Scholar
  3. 3.
    Borgström, L., H. Jòhannsson and B. K. Siesjö, The relationship between arterial PO2 and cerebral blood flow in hypoxic hypoxia. Acta physiol. scand. 1975. In press.Google Scholar
  4. 4.
    Cohen, P. J., S. C. Alexander, T. C. Smith, M. Reivich and H. Wollman, Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. appl. Physiol. 1967. 23. 183–189.PubMedGoogle Scholar
  5. 5.
    Courtice, F. C., The effect of oxygen lack on the cerebral circulation. J. Physiol. 1941. 100. 198–211.PubMedGoogle Scholar
  6. 6.
    Duffy, T. E., S. R. Nelson and O. H. Lowry, Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurochem. 1972. 19. 959–977.PubMedCrossRefGoogle Scholar
  7. 7.
    Eklöf, B., N.A. Lassen, L. Nilsson, K. Norberg, B. K. Siesjö and P. Torlöf, Regional cerebral blood flow in the rat measured by the tissue sampling technique; a criticial evaluation using four indicators C14-antipyrine, C14 -ethanol, H -water and Xenon133. Acta physiol. scand. 1974. 91. 1–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Folbergrová, J., B. Ljunggren, K. Norberg and B. K. Siesjö, Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res. 1974. 80. 265–279.PubMedCrossRefGoogle Scholar
  9. 9.
    Gurdjian, E. S., W. E. Stone and J. E. Webster, Cerebral metabolism in hypoxia. Arch. Neurol. Psychiat. 1944. 51. 472–477.CrossRefGoogle Scholar
  10. 10.
    Häggendal, E. and B. Norbäck, Effect of blood viscosity on cerebral blood flow. Acta chir. scand. 1966. Suppl. 364. 13–22.Google Scholar
  11. 11.
    Jóhannsson, H. and B. K. Siesjö, Blood flow and oxygen consumption in the rat brain in dilutional anemia. Acta physiol. scand. 1974. 91. 136–138.PubMedCrossRefGoogle Scholar
  12. 12.
    Jóhannsson, H. and B. K. Siesjö, Cerebral blood flow and oxygen consumption in the rat in hypoxic hypoxia. Acta physiol. scand. 1975. In press.Google Scholar
  13. 13.
    Kety, S.S. and C. F. Schmidt, The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral oxygen consumption of normal young men. J. clin. Invest. 1948. 27. 484–492.PubMedCrossRefGoogle Scholar
  14. 14.
    Kogure, K., P. Scheinberg, O. M. Reinmuth, M. Fujishima and R. Busto, Mechanisms of cerebral vasodilatation in hypoxia. J. appl. Physiol. 1970. 29. 223–229.PubMedGoogle Scholar
  15. 15.
    Landau, W. M., W. H. Freygang, Jr., L. P. Rowland, L. Sokoloff and S. S. Kety, The local circulation of the living brain; values in unanesthetized and anesthetized cat. Trans. Amer, neurol. Ass. 1955. 80. 125–129.Google Scholar
  16. 16.
    Lewis, L. D., B. Ljunggren, R. A. Ratcheson and B. K. Siesjö, Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J. Neurochem. 1974. 23. 673–679.PubMedCrossRefGoogle Scholar
  17. 17.
    McDowall, D. G., Interrelationships between blood oxygen tension and cerebral blood flow. In: Oxygen Measurements in Blood and Tissues, ed. J. P. Payne and D. W. Hill. pp. 205–214. Churchill, London 1966.Google Scholar
  18. 18.
    Nilsson, B., Measurement of overall blood flow and oxygen consumption in the rat brain. Acta physiol. scand. 1974. 92. 142–144.PubMedCrossRefGoogle Scholar
  19. 19.
    Nilsson, B., K. Norberg, C. -H. Nordstrom and B. K. Siesjö, Influence of hypercapnia and hypoxia on CBF in rats. 7th Intern. Symp. on Cerebral Circulation and Metabolism, Aviemore, Scotland. Submitted for publication.Google Scholar
  20. 20.
    Norberg, K. and B. K. Siesjö, Quantitative measurement of blood flow and oxygen consumption in the rat brain. Acta physiol. scand. 1974. 91. 154–164.PubMedCrossRefGoogle Scholar
  21. 21.
    Norberg, K. and B. K. Siesjö, Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glycolysis; a re-evaluation. Brain Res. 1975. In press.Google Scholar
  22. 22.
    Norberg, K. and B. K. Siesjö, Cerebral metabolism in hypoxic hypoxia. II. Citric acid cycle intermediates and associated amino acids. Brain Res. 1975. In press.Google Scholar
  23. 23.
    Norberg, K., B. Quistorff and B. K. Siesjö, Effects of short-term hypoxia on energy metabolism in the cerebral cortex of unanaesthetized and anaesthetized rats. Brain Res. Submitted for publication.Google Scholar
  24. 24.
    Paulson, O. B., H.H. Parving, J. Olesen and E. Skinhj, Influence of carbon monoxide and of hemodilution on cerebral blood flow and blood gases in man. J. appl. Physiol. 1973. 36. No. 1. 111–116.Google Scholar
  25. 25.
    Ponte, J. and M. J. Purves, The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels. J. Physiol. (Lond.) 1974. 237. 315–340.Google Scholar
  26. 26.
    Pontén, U., R. A. Ratcheson, L. G. Salford and B. K. Siesjö, Optimal freezing conditions for cerebral metabolism in rats. J. Neurochem. 1973. 21. 1127–1138.PubMedCrossRefGoogle Scholar
  27. 27.
    Reivich, M., J. Jehle, L. Sokoloff and S. S. Kety, Measurements of regional cerebral blood flow with antipyrine 14C in awake cats. J. appl. Physiol. 1969. 27. 296–300.PubMedGoogle Scholar
  28. 28.
    Siesjö, B. K. and L. Nilsson, The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentration in the rat brain. Scand. J. Clin. Lab. Invest. 1971. 27. 83–96.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Bo K. Siesjö
    • 1
  • Lars Borgström
    • 1
  • Halldór Jóhannsson
    • 1
  • Bengt Nilsson
    • 1
  • Karin Norberg
    • 1
  • Björn Quistorff
    • 1
  1. 1.Brain Research Laboratory, E-BlocketUniversity of LundLundSweden

Personalised recommendations