Advertisement

Correlation between the Redox State, Electrical Activity and Blood Flow in Cat Brain CORTEX During Hemorrhagic Shock

  • A. G. B. Kovách
  • A. Eke
  • E. Dóra
  • L. Gyulai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 75)

Abstract

Owing to its well developed autoregulatory mechanisms, total cerebral blood flow is stable over a wide range of mean arterial blood pressures and decreases significantly only when the perfusion pressure is below 50 mmHg.

Keywords

Hemorrhagic Shock Brain Cortex Saline Flush Cortical Stimulation Local Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kovách, A.G.B.: The function of the central nervous system after haemorrhage. J.clin.Path.23.Suppl. 4. 202–212.1970.CrossRefGoogle Scholar
  2. 2.
    Kovách, A.G.B., A. Mitsányi, E. Monos, I. Nyáry, A. Sulyok: Control of organ blood flow following hemorrhage. In: Neurohumoral and Metabolic Aspects of Injury. Ed. A.G.B. Kovách, H.B. Stoner, J.J. Spitzer. New York-London, Plenum Press, 1975. p. 1–17. Advanc.Exp.Med.Biol.33.Google Scholar
  3. 3.
    Kovách, A.G.B.: Blood flow and metabolism in brain and in adipose tissue during hemorrhagic shock. In: Shock in Low- and High-Plow States. Ed. B.K. Forscher, R.C. Lillehei, S.S. Stubbs. Excerpta Med. Intern.Congr.Ser. 247. Amsterdam, p.65–76. 1972.Google Scholar
  4. 4.
    Kovách, A.G.B., A. Fonyó: Metabolic Responses to Injury in Cerebral Tissue. In: The Biochemical Response to Injury. Ed. H.B. Stoner, C.I. Threlfall. Blackwell Sci.Publ. Oxford. p. 129–161. 1960.Google Scholar
  5. 5.
    Kovách, A.G.B.: Importance of Nervous and Metabolic Changes in the Development of Irreversibility in Experimental Shock. Fed. Proc. 20. Suppl.9. 122–137. 1961.Google Scholar
  6. 6.
    Kovách, A.G.B.: Tissue blood flow and metabolism in control and phenoxybenzamine pretreated animals in experimental shock. In: Traumatic Shock. Ed. Gy. Szántó, V. Hönig, O. Székely. Akadémiai Kiadó, Budapest, p. 163–185. 1973.Google Scholar
  7. 7.
    Dóra, E., Kovách, A.G.B., Nyáry, I.: Hypothalamic and Cortical Evoked Potentials in Hemorrhagic Shock. In: Neurohumoral and Metabolic Aspects of Injury. Ed. A.G. B. Kovách, H. B. Stoner, J.J. Spitzer. New York-London, Plenum Press, 1973. P. 481–488. Advanc. Exp. Med. Biol. 33.Google Scholar
  8. 8.
    Reivich, M., A.G.B. Kovách, J.J. Spitzer, P. Sándor: Cerebral Blood Flow and Metabolism in Hemorrhagic Shock in Baboons. In: Neurohumoral and Metabolic Aspects of Injury. Ed. A.G.B. Kovách, H.B. Stoner, J.J. Spitzer. New York-London. Plenum Press, 1973. P. 19–26. Advanc.Exp.Med.Biol. 33.Google Scholar
  9. 9.
    Nyáry, I., E. Dóra, P. Sándor, A.G.B. Kovách, M. Reivich: Cerebral Blood Flow and Metabolism in Hemorrhagic Shock in Baboon. 3rd Tbilisi Congress on Cerebral Circulation. Akadémiai Kiadó, Budapest, 1975.Google Scholar
  10. 10.
    Harbig, K., B. Chance, A.G.B. Kovách, M. Reivich: In vivo Measurement of Pyridine Nucleotide Fluorescence from the Cat Brain Cortex. Submitted to J. Appl. Physiol.1974.Google Scholar
  11. 11.
    Rosenthal, M., F.F. Jöbsis: Intracellular Redox Changes in Functioning Cerebral Cortex. II. Effects of Direct Cortical Stimulation. J. Neurophysiol. 34. 750–762. 1971.PubMedGoogle Scholar
  12. 12.
    Chance, B., B. Schöner, F. Schindler: The intracellular oxido-reduction state. In: Oxygen in Animal Organism. Ed. F. Dickens and E. Neil. New York, McMillan. p. 367. 1964.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • A. G. B. Kovách
    • 1
  • A. Eke
    • 1
  • E. Dóra
    • 1
  • L. Gyulai
    • 1
  1. 1.Experimental Research DepartmentSemmelweis Medical UniversityBudapestHungary

Personalised recommendations