A Theoretical Model of the Respiratory Function of Blood

  • J. H. Meldon
  • L. Garby
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 75)


The physiology and pathophysiology of oxygen transport as mediated by changes in erythrocyte acid-base status and organic phosphate content have been subjects of intense research activity in recent years. These endeavors have been inspired by the discovery of the dramatic effect of changes in red cell 2,3 diphosphoglycerate (DPG) concentration upon hemoglobin oxygen affinity (3,4), and such clinical observations as the inverse relationship between the amounts of DPG and hemoglobin in the blood of anemic patients (5,9). However, in the face of insufficient as well as conflicting data, the significance of changes in the oxygen affinity of hemoglobin as an adaptive mechanism for the maintenance of sufficient oxygen supply remains a matter of speculation (see, for example, the reviews of Bellingham, Rørth, and Woodson in ref. 6).


Oxygen Affinity Capillary Transit Time Sufficient Oxygen Supply Alveolar Carbon Dioxide Hemoglobin Oxygen Affinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Asakura, T., Saito, Y., Minakami, S. and H. Yoshikawa (1966). J. Biochem. Tokyo 59, 524.PubMedGoogle Scholar
  2. 2).
    Astrup, P., R0rth, M. and C. Thorshauge (1970). Scand. J. Clin. Lab. Invest. 26, 47.PubMedCrossRefGoogle Scholar
  3. 3).
    Benesch, R. and R.E. Benesch (1967). Biochem. Biophys. Res. Comm. 26, 162.PubMedCrossRefGoogle Scholar
  4. 4).
    Chanutin, A. and R.R. Curnish (1967). Arch. Biochem. Biophys. 121, 96.PubMedCrossRefGoogle Scholar
  5. 5).
    Eaton, J.W. and G.J. Brewer (1968). Proc. Nat. Sci. USA 61, 756.CrossRefGoogle Scholar
  6. 6).
    L. Garby (ed.) (1974). Clinics in Hematology 3, 575–720.Google Scholar
  7. 7).
    Guest, G.M. and S. Rapoport (1939). Am. J. Dis. Child 58, 1072.Google Scholar
  8. 8).
    Hill, E.P., Power G.G. and L.D. Longo (1973). Am. J. Physiology 224, 904.Google Scholar
  9. 9).
    M. Hjelm (1969). Försvarsmedicin 5, 219.Google Scholar
  10. 10).
    Kilmartin, J.V. and L. Rossi-Bernardi (1973). Physiol. Rev. 53, 836.PubMedGoogle Scholar
  11. 11).
    A. Krogh (1919). J. Physiol. London 52, 409.PubMedGoogle Scholar
  12. 12).
    Lichtman, M.A., Murphy, M.S., Whitbeck, A.A. and E.A. Kearney (1974). Brit. J. Hæmat. 27, 439.PubMedCrossRefGoogle Scholar
  13. 13).
    J.H. Meldon, manuscript in preparation.Google Scholar
  14. 14).
    Meldon, J.H. and L. Garby (1975). Acta Med. Scand. Suppl. 578, in press.Google Scholar
  15. 15).
    Shaw, L.A. and A.C. Messer (1932). Am. J. Physiol. 100, 122.Google Scholar
  16. 16).
    J.H.M. was supported by Nat. Heart and Lung Institute (USA) Postdoctoral Fellowship 5 F02 HL54901–02.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • J. H. Meldon
    • 1
  • L. Garby
    • 1
  1. 1.Department of PhysiologyOdense UniversityOdenseDenmark

Personalised recommendations