Facilitated Diffusion of CO and Oxygen in the Presence of Hemoglobin or Myoglobin

  • F. Kreuzer
  • L. J. C. Hoofd
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 75)


Kreuzer and Hoofd (1970, 1972) presented an approximate analytical solution of the basic equations of facilitated diffusion including chemical reactions for the systems Hb + O2 and Mb + O2, and investigated the effects of various factors of possible importance including the values of the diffusion coefficients, the chemical reaction rates, the actual diffusion path length, a possible back pressure of oxygen on the low-pressure side, and nonequilibrium versus equilibrium approach. They assumed the presence of three regions in the layer: a middle core very near equilibrium and two marginal regions not at equilibrium (similar treatment by Smith et al., 1973). In their recent review Schultz et al. (1974) showed that this analysis leads to solutions which are valid over a wide range of Damköhler numbers (which, in diffusion-reaction problems, is the ratio of certain characteristic times for diffusion to certain characteristic or relaxation times for chemical reaction).


Layer Thickness Chemical Equilibrium Back Pressure Approximate Analytical Solution Damkohler Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Goddard, J.D., J.S. Schultz and S.R. Suchdeo: AIChE J. 20: 625, 1974,CrossRefGoogle Scholar
  2. Goddard, J.D., J.S. Schultz and S.R. Suchdeo: Chem. Eng. Sci. 29: 2041, 1974.CrossRefGoogle Scholar
  3. Kreuzer, F., and L.J.C. Hoofd: Respir. Physiol. 8: 280, 1970.PubMedCrossRefGoogle Scholar
  4. Kreuzer, F., and L.J.C. Hoofd: Respir. Physiol. 15: 104, 1972.PubMedCrossRefGoogle Scholar
  5. Kutchai, H., J.A. Jacquez and F.J. Mather: Biophys. J. 10: 38, 1970.PubMedCrossRefGoogle Scholar
  6. La Force, R.C.: Trans. Faraday Soc. 62: 1458, 1966.CrossRefGoogle Scholar
  7. La Force, R.C., and I. Fatt: In: Chemical Engineering in Medicine and Biology, ed. D. Hershey, p. 107, Plenum Press, New York, 1967.Google Scholar
  8. Mochizuki, M., and R.E. Forster: Science 138: 897, 1962.PubMedCrossRefGoogle Scholar
  9. Murray, J.D., and J. Wyman: J. Biol. Chem. 246: 5903, 1971.PubMedGoogle Scholar
  10. Schultz, J.S., J.D. Goddard and S.R. Suchdeo: AIChE J. 20: 417, 1974.CrossRefGoogle Scholar
  11. Smith, K.A., J.H. Meldon and CK. Colton: AIChE J. 19: 102, 1973.CrossRefGoogle Scholar
  12. Suchdeo, S.R., J.D. Goddard and J.S. Schultz: In: Oxygen Transport to Tissue, eds. D.F. Bruley and H.I. Bicher. Adv. Exper. Med. and Biol., vol. 37B, p. 951, Plenum Press, New York, 1973.CrossRefGoogle Scholar
  13. Suchdeo, S.R., and J.S. Schultz: Biochim. Biophys. Acta 352: 412, 1974.PubMedCrossRefGoogle Scholar
  14. Wittenberg, J.B.: J. Biol. Chem. 241: 104, 1966.PubMedGoogle Scholar
  15. Yung, D., and R.F. Probstein: J. Phys. Chem. 77: 2201, 1973.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • F. Kreuzer
    • 1
  • L. J. C. Hoofd
    • 1
  1. 1.Department of PhysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations