Advertisement

Some Properties of Bovine Pineal Tryptophan Hydroxylase

  • Arata Ichiyama
  • Hiroyuki Hasegawa
  • Chiharu Tohyama
  • Chieko Dohmoto
  • Tohru Kataoka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)

Abstract

The conversion of L-tryptophan to L-5HTP is the first step in the biosynthesis of serotonin in the brain and of melatonin in the pineal gland and is catalyzed by tryptophan hydroxylase. Since the first demonstration by Grahame-Smith that a specific tryptophan hydroxylase exists in the brain (1), the enzyme has been studied at various laboratories including our own (2–11) and is now accepted as a pterin-dependent aromatic amino acid monooxygenase (12).

Keywords

Pineal Gland Hydroxylase Activity Tryptophan Hydroxylase Phenylalanine Hydroxylase Tyrosine Hydroxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used are

5HTP

5-hydroxytryptophan

BpH4

5,6,7,8-tetrahydrobiopterin

DMPH4

6,7-dimethyl-5,6,7,8-tetra-hydropterin

6MPH4

6-methyl-5,6,7,8-tetrahydropterin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grahame-Smith, D. G. (1964) Biochem. Biophys. Res. Communs. 16, 586–592.CrossRefGoogle Scholar
  2. 2.
    Gal, E. M., Armstrong, J. C., and Ginsberg, B. (1966) J. Neuro-chem. 13, 643–654.Google Scholar
  3. 3.
    Green, H., and Sawyer, J. L. (1966) Anal. Biochem. 15, 53–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Hosoda, S., and Glick, D. (1966) J. Biol. Chem. 241, 192–196.PubMedGoogle Scholar
  5. 5.
    Grahame-Smith, D. G. (1967) Biochem. J. 105, 351–360.PubMedGoogle Scholar
  6. 6.
    Lovenberg, W., Jequier, E., and Sjoerdsma, A. (1967) Science 155, 217–219.PubMedCrossRefGoogle Scholar
  7. 7.
    Grahame-Smith, D. G. (1968) Adv. Pharmacol. 6A, 37–42.CrossRefGoogle Scholar
  8. 8.
    Green, H. (1968) Adv. Pharmacol. 6A, 18–19.CrossRefGoogle Scholar
  9. 9.
    Ichiyama, A., Nakamura, S., Nishizuka, Y., and Hayaishi, O. (1968) Adv. Pharmacol. 6A, 5–17.CrossRefGoogle Scholar
  10. 10.
    Lovehberg, W., Jequier, E., and Sjoerdsma, A. (1968) Adv. Pharmacol. 6A, 21–35.CrossRefGoogle Scholar
  11. 11.
    Ichiyama, A., Nakamura, S., Nishizuka, Y., and Hayaishi, O. (1970) J. Biol. Chem. 245, 1699–1709.PubMedGoogle Scholar
  12. 12.
    Kaufman, S., and Fisher, D. B. (1974) in “Molecular Mechanisms of Oxygen Activation” (Hayaishi, O., ed) pp 285–369, Academic Press, New York.Google Scholar
  13. 13.
    Friedman, P. A., Lloyd, T., and Kaufman, S. (1972) Molecular Pharmacol. 8, 501–510.Google Scholar
  14. 14.
    Friedman, P. A., Kappleman, A. H., and Kaufman, S. (1972) J. Biol. Chem. 247, 4165–4173.PubMedGoogle Scholar
  15. 15.
    Fisher, D. B., and Kaufman, S. (1973) J. Biol. Chem. 248, 4345–4353.PubMedGoogle Scholar
  16. 16.
    Tong, J. H., and Kaufman, S. (1975) J. Biol. Chem. 250, 4152–4158.PubMedGoogle Scholar
  17. 17.
    Ichiyama, A., Hori, S., Mashimo, Y., Nukiwa, T., and Makuuchi, H. (1974) FEBS Letters 40, 88–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Nukiwa, T., Tohyama, C., Okita, C., Kataoka, T., and Ichiyama, A. (1974) Biochem. Biophys. Res. Communs. 60, 1029–1035.CrossRefGoogle Scholar
  19. 19.
    Christenson, J. G., Dairman, W., and Udenfriend, S. (1970) Arch. Biochem. Biophys. 141, 356–367.PubMedCrossRefGoogle Scholar
  20. 20.
    Guroff, G., and Ahramowitz, A. (1967) Anal. Biochem. 19, 548–555.PubMedCrossRefGoogle Scholar
  21. 21.
    Fukushima, T., and Akino, M. (1968) Arch. Biochem. Biophys. 128, 1–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Bobst, von A., and Viscontini, M. (1966) Helv. Chim. Acta 49, 875–884.CrossRefGoogle Scholar
  23. 23.
    Personal communication from Dr. T. Fukushima, Faculty of Science, Tokyo Metropolitan University, Setagaya-ku, Tokyo, Japan.Google Scholar
  24. 24.
    Hori, S. (1975) Biochim. Biophys. Acta 384, 58–68.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaufman, S., and Levehberg, B. (1959) J. Biol. Chem. 234, 2683–2688.PubMedGoogle Scholar
  26. 26.
    Nagatsu, T., Levitt, M., and Udenfriend, S. (1964) J. Biol. Chem. 239, 2910–2917.PubMedGoogle Scholar
  27. 27.
    Miyamoto, E., Petzold, G. L., Kuo, J. F., and Greengard, P. (1973) J. Biol. Chem. 248, 179–189.PubMedGoogle Scholar
  28. 28.
    Unpublished data.Google Scholar
  29. 29.
    Renson, J., Weissbach, H., and Udenfriend, S. (1962) J. Biol. Chem. 237, 2261–2264.PubMedGoogle Scholar
  30. 30.
    Shiman, R., Akino, M., and Kaufman, S. (1971) J. Biol. Chem. 246, 1330–1340.PubMedGoogle Scholar
  31. 31.
    Kaufman, S. (1961) Biochim. Biophys. Acta 51, 619–621.PubMedCrossRefGoogle Scholar
  32. 32.
    Guroff, G., Kondo, K., and Daly, J. (1966) Biochem. Biophys. Res. Communs. 25, 622–627.CrossRefGoogle Scholar
  33. 33.
    Deguchi, T., and Barchas, J. D. (1972). Molecular Pharmacol. 8, 770–779.Google Scholar
  34. 34.
    Petrack, B., Sheppy, F., Fetzer, V., Manning, T., Chertock’, H., and Ma, D. (1972) J. Biol. Chem. 247, 4872–4878.PubMedGoogle Scholar
  35. 35.
    Guroff, G., and Ito, T. (1965) J. Biol. Chem. 240, 1175–1184.Google Scholar
  36. 36.
    Guroff, G., and Rhoads, C.A. (1967) J. Biol. Chem. 242, 3641–3645.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Arata Ichiyama
    • 1
  • Hiroyuki Hasegawa
    • 1
  • Chiharu Tohyama
    • 2
  • Chieko Dohmoto
    • 2
  • Tohru Kataoka
    • 2
  1. 1.Department of BiochemistryHamamatsu University School of MedicineHamamatsu-shiJapan
  2. 2.Faculty of MedicineUniversity of TokyoHongo, Bunkyo-ku, Tokyo 113Japan

Personalised recommendations