Sequence Investigation of the Clostridium Pasteurianum Nitrogenase: the Partial Amino Acid Sequence of Azoferredoxin

  • Masaru Tanaka
  • Mitsuru Haniu
  • Kerry T. Yasunobu
  • Leonard E. Mortenson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


Our laboratory has been investigating the primary structures of various iron-sulfur proteins (l) with various long term goals in mind. These are: l) to provide essential data for structure-function investigations; 2) to provide evolutionary yardsticks for measuring the age of the iron-sulfur containing organisms; and provide necessary structural data for the X-ray crystallographers interested in determining the complete structures of the Fe-S proteins. Thus far, the Fe-S proteins sequenced have had relatively low molecular weights and perhaps it is time to extend the studies to proteins of greater complexity and with higher molecular weights. The protein chosen in the present investigation was the Clostridium pasteurianum nitrogenase and more specifically the azoferredoxin component.


Tryptic Peptide Clostridium Pasteurianum Cyanogen Bromide Fragment Amino Acid Composition Data Valine Methionine Isoleucine Leucine Tyrosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yasunobu, K. T., and Tanaka, M. (1973). in Iron-Sulfur Proteins (Lovenberg, W., ed.), Academic Press, New York, N. Y., Vol II, pp. 27–130.Google Scholar
  2. 2.
    Dalton, H., and Mortenson, L.E. (1972). Bacterid. Reviews 36, 231–260.Google Scholar
  3. 3.
    Hardy, R.W.F., Knight, E., Jr., McDonald, C.C., and D’Eustachio A.J. (1965). in Non-Heme Iron Proteins (San Pietro, A., ed.), The Antioch Press, Yellow Springs, Ohio, pp. 275–282.Google Scholar
  4. 4.
    Hardy, R.W.F., Burns, R.C., and Parshall, G.W. (1971). Advan. Chem. Soc. 100, 219–247.CrossRefGoogle Scholar
  5. 5.
    Orme-Johson, W.H. (1973). Ann. Rev. Biochem. 42, 159–204.CrossRefGoogle Scholar
  6. 6.
    Burris, R.H., and Orme-Johnson, W.H. (l974) in Microbial Iron Metabolism (Neilands, J.B. ed.), Academic Press, New York, N. Y., pp. 187–209.Google Scholar
  7. 7.
    Zumft, W.G., and Mortenson, L.E. (1975). Biochim. Biophys. Acta 416, 1–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, J.-S, Multani, J.S., and Mortenson, L.E. (1973). Biochim. Biophys. Acta. 310, 51–59.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang, T.C., Zumft, W.G., and Mortenson, L.E. (1973). J. Bacteriol. 113, 884–890.PubMedGoogle Scholar
  10. 10.
    Zumft, W.G., and Mortenson, L.E. (1973). Eur. J. Biochem. 35. 401–409.PubMedCrossRefGoogle Scholar
  11. 11.
    Tanaka, M., Haniu, M., Yasunobu, K.T., Evans, M.C.W., and Rao, K.K. (1975). Biochem. l4, 1938.Google Scholar
  12. 12.
    Tanaka, M., Haniu, M., Yasunobu, K.T., Rao, K.K., and Hall, D.O. (1975). Biochemistry 14, 5535.PubMedCrossRefGoogle Scholar
  13. 13.
    Mortenson, L.E. (1972). Methods Enzymol. 24, 455.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Masaru Tanaka
    • 1
  • Mitsuru Haniu
    • 1
  • Kerry T. Yasunobu
    • 1
  • Leonard E. Mortenson
    • 2
  1. 1.Dept. of Biochem-BiophysUniversity of Hawaii Medical SchoolUSA
  2. 2.Dept. of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations