Structural Studies of Electron Transfer Proteins from Sulfate Reducing Bacteria: The Amino Acid Sequence of Two Rubredoxins Isolated from Desulfovibrio Vulgaris and Desulfovibrio Gigas

  • Mireille Bruschi
  • Jean Le Gall
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


The sulfate reducing bacteria are still able to perform today a very ancient process: the dissimilatory reduction of sulfates. Ault and Kulp (1) have shown that a biological reduction of sulfates did occur on this planet as far back as 1 to 2.5 billion years, that is to say before the appearance of the atmospheric oxygen. Sulfate reducing bacteria were for a long time thought to contain a rather truncated electron transfer chain, but recent work in this field brought to light the fact that the 8 electron pairs necessary to reduce sulfate into hydrogen sulfide necessitate the presence of a rather sophisticated set of electron carriers.


Sulfate Reduce Bacterium Cyanogen Bromide Clostridium Pasteurianum Electron Transfer Protein Ancient Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ault, W.U. and Kulp, J.L., Geochim. Cosmochim. Acta, 16 (1959) 201–235.CrossRefGoogle Scholar
  2. 2.
    Le Gall, J. and Bruschi-Heriaud, M., 1968, in “Structure and Function of Cytochromes” (Okunuki, K., Kamen, M.D. and Sekusu, I., Eds.) p. 467, Univ. of Tokyo Press and University Park Press.Google Scholar
  3. 3.
    Bruschi, M. and Le Gall, J., Biochim. Biophys. Acta, 271 (1972) 48–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Dervartanian, D.V. and Le Gall, J., Biochim. Biophys. Acta, 346 (1974) 79–99.CrossRefGoogle Scholar
  5. 5.
    Dobson, C.M., Hoyle, N.J., Geraldes, C.F., Bruschi, M., Le Gall, J., Wright, P.E. and Williams, R.J.P., Nature, 249 (1974) 425.PubMedCrossRefGoogle Scholar
  6. 6.
    Travis, J., Newman, D.J., Le Gall, J. and Peck, H.D. Jr., Biochem. Biophys. Res. Commun., 45 (1971) 452–458.PubMedCrossRefGoogle Scholar
  7. 7.
    Dubourdieu, M., Le Gall, J. and Fox, J.L., Biochem. Biophys. Res. Commun., 54 (1973) 1418–1425.CrossRefGoogle Scholar
  8. 8.
    Watenpaugh, K.D., Sieker, L.C. and Jensen, L.H., Proc. Natl. Acad. Sci. U.S., 70 (1973) 3857–3860.CrossRefGoogle Scholar
  9. 9.
    Bruschi, M. and Le Gall, J., Biochim. Biophys. Acta, 263 (1972) 279–282.PubMedCrossRefGoogle Scholar
  10. 10.
    Le Gall, J., Ann. Inst. Pasteur, 114 (1968) 109–115.Google Scholar
  11. 11.
    Bornstein, P., Biochem. Biophys. Res. Commun., 36 (1969) 957–964.PubMedCrossRefGoogle Scholar
  12. 12.
    Omenn, G.S., Fontana, A. and Anfinsen, C.B., J. Biol. Chem., 245 (1970) 1895.PubMedGoogle Scholar
  13. 13.
    Mc Carthy, K.F. (1972) Ph.D. dissertation George Washington University.Google Scholar
  14. 14.
    Bachmayer, H., Yasunobu, K.T., Peel, J.L. and Mayhew, S., J. Biol. Chem., 243 (1968) 1022–1030.PubMedGoogle Scholar
  15. 15.
    Bachmayer, H., Benson, A.H., Yasunobu, K.T., Garrard, W.T. and Whiteley, H.R., Biochem., 7 (1968) 986–996.CrossRefGoogle Scholar
  16. 16.
    Benson, A., Tomoda, K., Chang, J., Matsueda, G., Lode, E.T., Coon, M.J. and Yasunobu, K.T., Biochem. Biophys. Res. Commun., 42 (1971) 640–646.PubMedCrossRefGoogle Scholar
  17. 17.
    Weinstein, B., Biochem. Biophys. Res. Commun., 35 (1969) 109–114.PubMedCrossRefGoogle Scholar
  18. 18.
    Herriott, J.R., Sieker, L.C., Jensen, L.H. and Lovenberg, W., J. Mol. Biol., 50 (1970) 391–406.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Mireille Bruschi
    • 1
  • Jean Le Gall
    • 1
  1. 1.Laboratoire de Chimie BacterienneC.N.R.S.Marseille Cedex 2France

Personalised recommendations