The Involvement of Superoxide and Trivalent Copper in the Galactose Oxidase Reaction

  • Gordon A. Hamilton
  • Gary R. Dyrkacz
  • R. Daniel Libby
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


Until the present work, Cu(I) and Cu(II) were considered to be the only valence states of copper which are involved in the various cuproenzymic reactions. In the investigations to be summarized here we have obtained the first direct evidence that Cu(III), or some mono-copper species which behaves like it, is a catalytically active intermediate in an enzymic reaction, in this case that catalyzed by galactose oxidase. In addition, the role of superoxide in the galactose oxidase reaction has been clarified to a greater extent than has been the case for most other enzymic reactions in which superoxide has been implicated. When we began this work, we certainly did not anticipate all these results, especially the involvement of Cu(III). Thus, before beginning a detailed summary of the work, it seems appropriate to briefly discuss some of our reasons for studying this enzyme, and to point out the mechanistic dilemma which faced us when we began.


Redox Potential Induction Period Alcohol Oxidation Redox Buffer Enzymic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Hamilton in “Molecular Mechanisms of Oxygen Activation,” O. Hayaishi (ed), Academic Press, New York, 1974, p. 405.Google Scholar
  2. 2.
    G. A. Hamilton, Progress in Bioorganic Chemistry, 1, 83 (1971).Google Scholar
  3. 3.
    V. Massey, G. Palmer and D. Ballou, in “Oxidases and Related Redox Systems,” T. E. King, H. S. Mason and M. Morrison (eds), University Park Press, Baltimore, Maryland, 1973, p. 25;Google Scholar
  4. 3a.
    V. Massey, S. Strickland, S. G. Mayhew, L. G. Howell, P. C. Engel, R. G. Matthews, M. Shuman and P. A. Sullivan, Biochem. Biophys. Res. Commun., 36, 891 (1969).PubMedCrossRefGoogle Scholar
  5. 4.
    J. A. D. Cooper, W. Smith, M. Bacilla and H. Medina, J. Biol. Chem., 234, 445 (1959).PubMedGoogle Scholar
  6. 5.
    D. Amaral, F. Kelly-Falcoz, and B. L. Horecker, Meth. Enzymol., 9, 87 (1966);CrossRefGoogle Scholar
  7. 5a.
    G. Avigad, D. Amaral, C. Asensio, and B. L. Horecker, J. Biol. Chem., 237, 2736 (1962);PubMedGoogle Scholar
  8. 5b.
    D. Amaral, L. Bernstein, D. Morse, and B. L. Horecker, J. Biol. Chem., 238 2281 (1963);PubMedGoogle Scholar
  9. 5c.
    F. Kelly-Falcoz, H. Greenberg, and B. L. Horecker, J. Biol. Chem., 240, 2966 (1965).PubMedGoogle Scholar
  10. 6.
    W. E. Blumberg, B. L. Horecker, F. Kelly-Falcoz, and J. Peisach, Biochim. Biophys. Acta, 96, 336 (1965).PubMedGoogle Scholar
  11. 7.
    R. A. Schlegel, C. M. Gerbeck, and R. Montgomery, Carbohyd. Res., 7, 193 (1968).CrossRefGoogle Scholar
  12. 8.
    G. T. Zancan and D. Amaral, Biochim. Biophys. Acta, 198, 146 (1970).PubMedCrossRefGoogle Scholar
  13. 9.
    S. Bauer, G. Blauer, and G. Avigad, Israel J. Chem., 5, 126p (1967).Google Scholar
  14. 10.
    A. Maradufu, G. M. Cree and A. S. Perlin, Canadian J. Chem., 49, 3429 (1971).CrossRefGoogle Scholar
  15. 11.
    G. A. Hamilton, J. de Jersey and P. K. Adolf in “Oxidases and Related Redox Systems,” T. E. King, H. S. Mason and M. Morrison (eds), University Park Press, Baltimore, Maryland, 1973, p. 103.Google Scholar
  16. 12.
    G. A. Hamilton, R. D. Libby and C. R. Hartzell, Biochem. Biophys. Res. Commun., 55, 333 (1973).PubMedCrossRefGoogle Scholar
  17. 13.
    G. R. Dyrkacz, R. D. Libby and G. A. Hamilton, J. Amer. Chem. Soc, 98, 0000 (1976).CrossRefGoogle Scholar
  18. 14.
    L. D. Kwiatkowski and D. J. Kosman, Biochem. Biophys. Res. Commun., 53, 715 (1973);PubMedCrossRefGoogle Scholar
  19. 14a.
    D. J. Kosman, R. D. Bereman, M. J. Ettinger and R. S. Giordano, Biochem. Biophys. Res.Commun., 54, 856 (1973);PubMedCrossRefGoogle Scholar
  20. 14b.
    M. J. Ettinger, Biochemistry, 13, 1242 (1974)PubMedCrossRefGoogle Scholar
  21. 14c.
    M. J. Ettinger and D. J. Kosman, Biochemistry, 13, 1247 (1974);PubMedCrossRefGoogle Scholar
  22. 14d.
    R. S. Giordano and R. D. Bereman, J. Amer. Chem. Soc, 96, 1019 (1974);CrossRefGoogle Scholar
  23. 14d.
    R. S. Giordano, R. D. Bereman, D. J. Kosman and M. J. Ettinger, J. Amer. Chem. Soc, 96, 1023 (1974).CrossRefGoogle Scholar
  24. 15.
    D. J. Kosman, M. J. Ettinger, R. E. Weiner and E. J. Massaro, Arch. Biochem. Biophys., 165, 456 (1974).PubMedCrossRefGoogle Scholar
  25. 16.
    L. Cleveland and L. Davis, Biochim. Biophys. Acta, 341, 517 (1974);PubMedCrossRefGoogle Scholar
  26. 16a.
    L. Cleveland, R. E. Coffman, P. Coon and L. Davis, Biochemistry, 14, 1108 (1975).PubMedCrossRefGoogle Scholar
  27. 17.
    R. D. Libby, Ph.D. Thesis, The Pennsylvania State University, 1974.Google Scholar
  28. 18.
    J. M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969);PubMedGoogle Scholar
  29. 18a.
    I Fridovich in ref. 1, p. 453., (1969)Google Scholar
  30. 19.
    D. Klug, J. Rabani and X. Fridoyich, J. Biol. Chem., 247, 4839 (1972).PubMedGoogle Scholar
  31. 20.
    J. E. O’Reilly, Biochim. Biophys. Acta, 292, 509 (1973).PubMedCrossRefGoogle Scholar
  32. 21.
    E. Jackson and D. A. Pantony, J. Applied Electrochem., 1, 113 (1971).CrossRefGoogle Scholar
  33. 22. (a).
    J. J. Bour, P. J. M. W. L. Birker, and J. J. Steggerda, Inorg. Chem., 10, 1202 (1971);CrossRefGoogle Scholar
  34. 22. (b).
    D. C. Olson and J. Vasilevskis, Ibid. 10, 463 (1971);CrossRefGoogle Scholar
  35. 22. (c).
    L. F. Warren, and M. A. Bennett, J. Amer. Chem. Soc, 96, 3340 (1974);CrossRefGoogle Scholar
  36. 22. (d).
    F. J. Hollander, M. L. Caffery, D. Coucouvanis, ibid., 96, 4682 (1974);CrossRefGoogle Scholar
  37. 22. (e).
    D. W. Margerum, K. L. Chellappa, F. P. Bossu and G. L. Burce, J. Amer. Chem. Soc, 97, 6894 (1975);CrossRefGoogle Scholar
  38. 22. (f).
    G. L. Burce, E. B. Paniago, and D. W. Margerum, Chem. Comm., 261 (1975); (g) Chemical and Engineering News, 53, no. 49, Dec. 8, 1975, p. 26.Google Scholar
  39. 23.
    D. Meyerstein, Inorg. Chem., 10, 2244 (1971).CrossRefGoogle Scholar
  40. 24. (a).
    M. Anbar, R. A. Munoz and P. Rona, J. Phys. Chem., 67, 2708 (1963);CrossRefGoogle Scholar
  41. 24. (b).
    A. Levitzki, M. Anbar, and A. Berger, Biochemistry, 6, 3757 (1967).PubMedCrossRefGoogle Scholar
  42. 25. (a).
    J. Rocek and A. E. Radkowsky, J. Amer. Chem. Soc, 95, 7123 (1973);CrossRefGoogle Scholar
  43. 25. (b).
    M. Rahman and J. Rocek, ibid, 95, 5455, 5462 (1971);Google Scholar
  44. 25. (b).
    K. B. Wiberg and S. K. Mukherjee, ibid, 96, 1884 (1974).CrossRefGoogle Scholar
  45. 26.
    S. Gutteridge and D. Robb, Eur. J. Biochem., 54, 107 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Gordon A. Hamilton
    • 1
  • Gary R. Dyrkacz
    • 1
  • R. Daniel Libby
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations