Formal Catalytic Mechanism of Ascorbate Oxidase

  • Stephen R. Burstein
  • Brenda Gerwin
  • Hugh Taylor
  • John Westley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


Ascorbate oxidase (EC, a copper enzyme widely distributed in the plant kingdom, catalyzes the oxidation of ascorbate by oxygen to the final products dehydroascorbate and water [1]. Yama-zaki and Piette [2,3] showed that the catalyzed reaction proceeds first to an ascorbyl radical, which dismutes spontaneously to ascorbate and dehydroascorbate. They also found that the enzyme has the same maximal velocity with reductate or ascorbate as donor substrate [2]. Nakamura et al. [4] have shown that double reciprocal plots for ascorbate oxidase with ascorbate as the varied substrate at different oxygen concentrations are a family of parallel straight lines. This pattern implies that the points of entry of the reduc-tant and oxidant substrates into the catalytic cycle are separated by a reaction that is irreversible under initial velocity conditions. The results of stopped flow experiments by Nakamura and Ogura [5,6] have been cited as evidence that oxidation of the reduced enzyme by molecular oxygen is intrinsically a faster process than reduction of the oxidized enzyme by donor substrates [7]. Gerwin et al. [8] showed that the active form of the reductant substrate is the monoanion.


Formal Mechanism Maximal Velocity Catalytic Cycle Enzymic Form Double Reciprocal Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.G. Steinman and C.R. Dawson, J. Amer. Chem. Soc, 64, 1212 (1942).CrossRefGoogle Scholar
  2. 2.
    I. Yamazaki and L.H. Piette, Biochim, Biophys. Acta, 50, 62 (1961).CrossRefGoogle Scholar
  3. 3.
    I. Yamazaki, J. Biol. Chem., 237, 224 (1962).PubMedGoogle Scholar
  4. 4.
    T. Nakamura, N. Makino, and Y. Ogura, J. Biochem., 64, 189 (1968).PubMedGoogle Scholar
  5. 5.
    T. Nakamura and Y. Ogura, J. Biochem., 59, 449 (1966).PubMedGoogle Scholar
  6. 6.
    T. Nakamura and Y. Ogura, J. Biochem., 64, 267 (1968).PubMedGoogle Scholar
  7. 7.
    J. Westley, Enzymic Catalysis, p. 124, Harper and Row, New York (1969).Google Scholar
  8. 8.
    B. Gerwin, S.R. Burstein, and J. Westley, J. Biol. Chem., 249, 2005 (1974).PubMedGoogle Scholar
  9. 9.
    T. Reichstein and R.. Oppenauer, Helv. Chim. Acta, 16, 988 (1933).CrossRefGoogle Scholar
  10. 10.
    G. Hesse, G.. Krehbill, and F. Rümisch, Ann. Chem., 592, 137 (1955).CrossRefGoogle Scholar
  11. 11.
    R.G. Ault, D.K. Baird, H.C. Carrington, W.N. Haworth, R. Herbert. E.L. Hirst, E.G.V. Percival, F. Smith, and M. Stacey, J. Chem. Soc, 1419 (1933).Google Scholar
  12. 12.
    D.K. Baird, W.N. Haworth, R.W. Herbert, E.L. Hirst, F. Smith, and M. Stacey, J. Chem. Soc, 62 (1934).Google Scholar
  13. 13.
    G.N. Wilkinson, Biochem. J., 80, 324 (1961).PubMedGoogle Scholar
  14. 14.
    K. Tokuyama and C.R. Dawson, Biochim. Biophys. Acta, 56, 427 (1962).PubMedCrossRefGoogle Scholar
  15. 15.
    J.F. Fisher and J.L. Hall, Anal. Chem., 39, 1550 (1967).CrossRefGoogle Scholar
  16. 16.
    R.J. Magee and C.R. Dawson, Arch. Biochem. Biophys., 99, 338 (1962).CrossRefGoogle Scholar
  17. 17.
    S. Cha, J. Biol. Chem., 243, 820 (1968).PubMedGoogle Scholar
  18. 18.
    A.J. Everett and G.J. Minhoff, Trans. Faraday Soc, 49, 410 (1953).CrossRefGoogle Scholar
  19. 19.
    D.H. Fortnum, C.J. Battaglia, S.R. Cohen, and J. Edwards, J. Amer. Chem. Soc, 82, 778 (1960).CrossRefGoogle Scholar
  20. 20.
    M.H. Lee and C.R. Dawson, J. Biol. Chem., 248, 6596 (1973).PubMedGoogle Scholar
  21. 21.
    J.J. Burns, in Metabolic Pathways (D.M. Greenberg, ed), 3rd ed., Vol. I, pp. 394–411, Academic Press, New York (1967).Google Scholar
  22. 22.
    A. Szent-Györgyi, Science, 72, 125 (1930).PubMedCrossRefGoogle Scholar
  23. 23.
    E. Silverblatt and C.G. King, Enzymologia, 2, 222 (1938).Google Scholar
  24. 24.
    J.J. Burns and G. Ashwell, in The Enzymes (P.D. Boyer, H. Lardy, and K. Myrbäck, eds), 2nd ed., vol. 3, part B. pp. 388–392, Academic Press, New York (1960).Google Scholar
  25. 25.
    E.Y. Levin, B. Levenberg, and S. Kaufman, J. Biol. Chem., 235, 2080 (1960).PubMedGoogle Scholar
  26. 26.
    K.I. Kivirikko and D.J. Prockop, J. Biol. Chem., 242, 4007 (1967).PubMedGoogle Scholar
  27. 27.
    A. Weissberger, J.E. Luvallee, and D.S. Thomas, Jr., J. Amer. Chem. Soc, 65, 1934 (1943).CrossRefGoogle Scholar
  28. 28.
    M.M.T. Khan and A.E. Martell, J. Amer. Chem. Soc, 89, 4176 (1967).CrossRefGoogle Scholar
  29. 29.
    M.M.T. Khan and A.E. Martell, J. Amer. Chem. Soc, 89, 7104 (1967).CrossRefGoogle Scholar
  30. 30.
    R.R. Grinsted, J. Amer. Chem. Soc, 82, 3464 (1960).CrossRefGoogle Scholar
  31. 31.
    R.R. Grinsted, J. Amer. Chem. Soc, 82, 3472 (1960).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Stephen R. Burstein
    • 1
  • Brenda Gerwin
    • 1
  • Hugh Taylor
    • 1
  • John Westley
    • 1
  1. 1.Department of BiochemistryThe University of ChicagoChicagoUSA

Personalised recommendations