Some Insight into Intramolecular Electron Transfer of an Adrenodoxin Molecule

  • Tokuji Kimura
  • Taketoshi Taniguchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


The question of whether or not an aromatic amino acid residue participates in the electron transfer reaction from the surface of protein molecule to the iron-sulfur cluster has been a subject of considerable interest and debate. In particular, heme and non-heme iron proteins have been extensively investigated by utilizing such varied approaches as chemical modification, comparison of the oxidized and reduced structures by means of X-ray crystallography, and kinetic pulse radiolysis studies. In bacterial ferredoxins, both 13-C nuclear magnetic resonance (1,2) and X-ray crystallography studies have revealed unequivocally the proximity of a tyrosine residue to the 4Fe-4S cluster. An elegant study by Rabinowitz’s group indicated that a modified ferredoxin from Clostridum M-E free of any aromatic residue is as active as the native ferredoxin from Clostridium acidi urici (5) in the phosphoroclastic reaction. They concluded that the aromatic residues do not participate in the intramolecular electron transfer reaction in the bacterial ferredoxin.


Electron Paramagnetic Resonance Circular Dichroism Tyrosine Residue Native Protein Tryptophan Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Packer, E.L., Sterlicht, H., and Rabinowitz, J.C. (1972) Proc. Natl. Acad. Sci. U.S., 69, 3278–82CrossRefGoogle Scholar
  2. 2.
    Packer, E.L., Sterlicht, H., and Rabinowitz, J.C. (1975) J. Biol. Chem. 250, 2062–72.PubMedGoogle Scholar
  3. 3.
    Adman, E.T., Sieker, L.C., and Jensen, L.H., (1973) J. Biol. Chem. 248, 3987–96.PubMedGoogle Scholar
  4. 4.
    Carter, C.W., Jr., Kraut, J., Freer, S.T., Zuong, N.H., Alden, R.A., and Bartsch, R.G. (1974) J. Biol. Chem. 249, 4212–25.PubMedGoogle Scholar
  5. 5.
    Lode, E.T., Murray, C.L., and Rabinowitz, J.C. (1974) Biochem. Biophys. Res. Commun. 61, 163–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Tanaka, M., Haniu, M., Yasunobu, K.T. and Kimura, T. (1973) J. Biol. Chem. 248, 1141–57.PubMedGoogle Scholar
  7. 7.
    Kimura, T., Ting, J.J., and Huang, J.J. (1972) J. Biol. Chem. 247, 4476–79.PubMedGoogle Scholar
  8. 8.
    Huang, J.J., and Kimura, T. (1973) Biochemistry 12, 406–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Rawlings, J., Siiman, O., and Gray, H.B. (1974) Proc. Natl. Acad. Sci. U.S. 71, 125–7.CrossRefGoogle Scholar
  10. 10.
    Taniguchi, T., and Kimura, T. (1975) Biochemistry in press.Google Scholar
  11. 11.
    Mukai, K., Huang, J.J. and Kimura, T. (1974) Biochim. Biophys. Acta. 336, 427–36.Google Scholar
  12. 12.
    Taniguchi, T., and Kimura, T., to be submitted.Google Scholar
  13. 13.
    Sokolovsky, R., Riorden, J.F. and Vallee, B.L. (1966) Biochemistry 5. 3582–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Padmanabhan, R., and Kimura, T. (1970) J. Biol. Chem. 245, 2469–75.PubMedGoogle Scholar
  15. 15.
    Chu, J-W., and Kimura, T. (1973) J. Biol. Chem. 248, 5183–7.PubMedGoogle Scholar
  16. 16.
    Nakamura, S., and Kimura, T. (1971) J. Biol. Chem. 246, 6235–41.PubMedGoogle Scholar
  17. 17.
    Tanaka, M., Haniu, M., Yasunobu, K.T., Dus, K., and Gunsalus, I.C. (1974) J. Biol. Chem. 249, 3689–3701.PubMedGoogle Scholar
  18. 18.
    Kimura, T., Chu, J-W., and Parcells, J. (1975) in “5th International Symposium on Flavins and Flavoproteins”, edited by Thomas P. Singer, in press.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Tokuji Kimura
    • 1
  • Taketoshi Taniguchi
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations