Advertisement

X-Ray Absorption Spectroscopy: Probing the Chemical and Electronic Structure of Metalloproteins

  • W. E. Blumberg
  • P. Eisenberger
  • J. Peisach
  • R. G. Shulman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)

Abstract

Recently high fluxes of X-rays have become available in the form of synchrotron radiation from electron storage rings such as at the Stanford Synchrotron Radiation Project (SSRP). At SSRP one has 104 to 105 times more intensity of X-rays with a continuous spectrum than that available from standard X-ray tubes. This increase in intensity has allowed X-ray absorption to be observed successfully in dilute materials such as metalloproteins and metal complexes in solution. While X-ray absorption measurements have been made sporadically since 1931 (1), the measurements, their interpretation and their applications to dilute systems have only recently been extensively developed due to the work of Sayers, Stern, and Lytle (2) and the use of synchrotron sources (3).

Keywords

Albert Einstein College Crystal Field Splitting Electron Storage Ring Clostridium Pasteurianum Lower Energy Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kronig, R. de L. (1931). Physik 70, 317–323.CrossRefGoogle Scholar
  2. 2.
    Sayers, D. E., Lytle, F. W. and Stern, E. A. “Advances in X-Ray Analysis”, Vol. 13, Plenum Press, 1970, p. 243.Google Scholar
  3. 3.
    Kincaid, B. M., Eisenberger, P. (1975). Phys. Rev. Letts. 34, 1361–1364.CrossRefGoogle Scholar
  4. 4.
    Shulman, R. G., Eisenberger, P., Yafet, Y., and Blumberg, W. E. (1976). Proc. Nat. Acad. Sci. (U.S.A.) (in press).Google Scholar
  5. 5.
    Moore, C. E. “Atomic Energy Levels” Vol. II. Circular of the National Bureau of Standards 467, 1952.Google Scholar
  6. 6.
    Watenpaugh, K. D., Sieker, L. C., Herriott, J. R. and Jensen, L. H. (1971). Cold Spring Harbor Symposium on Quantitative Biology 36, 359–367.CrossRefGoogle Scholar
  7. 7.
    Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richardson, D. C. (1975). Proc. Nat. Acad. Sci. 72 1349.PubMedCrossRefGoogle Scholar
  8. 8.
    Rotilio, G., Calabrese, L., Mondovì, B., and Blumberg, W. E. (1974). J. Biol. Chen. 249, 3157–3160.Google Scholar
  9. 9.
    Healy, P. C. and White, A. H. (1972). J. Chem. Soc., Dalton Trans., 1163–1171.Google Scholar
  10. 10.
    Shulman, R. G., Eisenberger, P., Blumberg, W. E., and Stombaugh, N. A. (1975). Proc. Nat. Acad. Sci. (U.S.A.) 72, 4003–4007.CrossRefGoogle Scholar
  11. 11.
    Watenpaugh, K. D., Sieker, L. C., Herriott, J. R. and Jensen, L. H. (1973). Acta Crystallogr. Sect. B 29, 943–956.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • W. E. Blumberg
    • 1
  • P. Eisenberger
    • 1
  • J. Peisach
    • 2
  • R. G. Shulman
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA
  2. 2.Albert Einstein College of MedicineNew YorkUSA

Personalised recommendations