Studies on Bovine Adrenal Ferredoxin

  • S. Takemori
  • K. Suhara
  • M. Katagiri
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


Native and reconstituted adrenal ferredoxins have been obtained in crystalline form. The apoprotein was prepared by treatment of the native protein with trichloroacetic acid. When the apoprotein was incubated with ferrous ion, sulfide and 2-mercaptoethanol, the recovery of the reconstituted protein was considerably low. The reconstitution was greatly enhanced by the presence of 8 M urea. The reconstituted protein was indistinguishable from the native protein with respect to enzymic activity, spectral properties and iron content. The apparent contents of labile sulfide in both native and reconstituted proteins were about one mole per mole of protein when analyzed according to the original methylene blue method without alkaline zinc incubation. Extension of the alkaline zinc incubation over 2 hr resulted in release of two moles of labile sulfide per mole of protein.


Native Protein Adrenal Cortex DEAE Cellulose Spirulina Platensis Cysteic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Omura, T., Sanders, E., Estabrook, R. W., Cooper, D. Y. and Rosenthal, O. (1966) Arch. Biochem. Biophys. 117, 660.CrossRefGoogle Scholar
  2. 2.
    Kimura, T. and Suzuki, K. (1967) J. Biol. Chenu 242, 485.Google Scholar
  3. 3.
    Suhara, K., Takemori, S., and Katagiri, M. (1972) Biochim. Biophys. Acta 263, 272.PubMedCrossRefGoogle Scholar
  4. 4.
    Suhara, K., Ikeda, Y., Takemori, S. and Katagiri, M. (1972) FEBS Lett. 28, 45.PubMedCrossRefGoogle Scholar
  5. 5.
    Takemori, S., Suhara, K., Hashimoto, S., Hashimoto, M., Sato, H., Gomi, T. and Katagiri, M. (1975) Biochem. Biophys. Res. Commun. 63, 588.PubMedCrossRefGoogle Scholar
  6. 6.
    Takemori, S., Sato, H., Gomi, T., Suhara, K. and Katagiri, M. Biochem. Biophys. Res. Commun. In press.Google Scholar
  7. 7.
    Sugiyama, T. and Yamano, T. (1975) FEBS Lett. 52, 145.PubMedCrossRefGoogle Scholar
  8. 8.
    Suhara, K., Kanayama, K., Takemori, S. and Katagiri, M. (1974) Biochim. Biophys. Acta 336, 309.CrossRefGoogle Scholar
  9. 9.
    Rosenthal, O. and Narasimhulu, S. (1969) in Methods in Enzymology (Colowick, S. P. and Kaplan, N. O., eds), Vol. XV, pp. 604, Academic Press, New York.Google Scholar
  10. 10.
    Misra, H. P. and Fridovich, I. (1971) J. Biol. Chem. 246, 6886.PubMedGoogle Scholar
  11. 11.
    Tanaka, M., Haniu, M. and Yasunobu, K. T. (1970) Biochem. Biophys. Res. Commun. 39, 1182.PubMedCrossRefGoogle Scholar
  12. 12.
    Fogo, J. K. and Popowsky, M. (1949) Anal. Chem. 21, 732.CrossRefGoogle Scholar
  13. 13.
    Lovenberg, W., Buchanan, B. B. and Rabinowitz, J. C. (1963) J. Biol. Chem. 238, 3899.PubMedGoogle Scholar
  14. 14.
    Wada, K. and Matsubara, H., Unpublished work.Google Scholar
  15. 15.
    Suhara, K., Takemori, S., Katagiri, M., Wada, K., Kobayashi, H. and Matsubara, H. Anal. Biochem. In press.Google Scholar
  16. 16.
    Greenstein, J. P. and Winits, M. (1961) in Chemistry of the Amino Acids, Vol. III, pp. 1899, John Wiley and Sons, New York.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • S. Takemori
    • 1
  • K. Suhara
    • 1
  • M. Katagiri
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKanazawa UniversityIshikawa 920Japan

Personalised recommendations