Advertisement

Pseudomonad and Hepatic L-Tryptophan 2, 3-Dioxygenase

  • Philip Feigelson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)

Abstract

Kotake and collaborators discovered the ability of liver preparations to convert L-tryptophan to L-kynurenine (1). Knox and Mehler found that this overall reaction was the resultant of the activities of two distinct enzymes the first of which was tryptophan oxygenase which catalyzed the conversion of L-tryptophan to L-formylkynurenine (2). A similar enzyme was identified by Hayaishi and Stanier within extracts of Pseudomonas grown in L-tryptophan (3). Tanaka and Knox found this enzyme to be a heme protein (4). Subsequently Feigelson and Greengard prepared the apoenzyme and demonstrated restoration of tryptophan oxygenase catalytic activity by the addition of heme (ferriprotoporphyrin IX) thus confirming the catalytically essential role of heme in the functioning of this enzyme (5). We have since purified tryptophan oxygenase to homogeneity from both rat liver and induced Pseudomonas (6, 7). Our laboratory also demonstrated the presence of two moles of copper and two moles of heme per tetremer of enzyme and have produced other evidence suggesting a catalyic function for the copper as well as the heme moiety (8, 9, 10).

Keywords

Heme Protein Hepatic Level Substrate Induction Heme Moiety Distinct Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kotake, Y., and Masayama, T. (1936) Z. Physiol. Chem. 243, 237–244.CrossRefGoogle Scholar
  2. 2.
    Knox, W.E., and Mehler, A.H. (1950) J. Biol. Chem. 187, 419–430.PubMedGoogle Scholar
  3. 3.
    Hayaishi, O., and Stanier, R.Y. (1951) J. Bacteriol. 62, 691–709.PubMedGoogle Scholar
  4. 4.
    Tanaka, T., and Knox, W.E. (1959) J. Biol. Chem. 234, 1162–1170.PubMedGoogle Scholar
  5. 5.
    Feigelson, P., and Greengard, O. (1961) J. Biol. Chem. 236, 153–157.PubMedGoogle Scholar
  6. 6.
    Poillon, W.N., Maeno, H., Koike, K., and Feigelson, P., (1969) J. Biol. Chem. 244, 3447–3456.PubMedGoogle Scholar
  7. 7.
    Schutz, G., and Feigelson, P. (1972) J. Biol. Chem. 247, 5327–5332.PubMedGoogle Scholar
  8. 8.
    Feigelson, P. and Brady, F.O. (1974) in Molecular Mechanisms of Oxygen Activation, O. Hayaishi (Ed), Academic Press, 87–133.Google Scholar
  9. 9.
    Brady, F.O., Feigelson, P., and Rajagopalan, K.V. (1973) Arch. Biochem. Biophys. 157, 63–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Brady, F.O., Monaco, M.E., Forman, H. J., Schutz, G., and Feigelson, P. (1972) J. Biol. Chem. 247, 7915–7922.PubMedGoogle Scholar
  11. 11.
    Ishimura, Y., and Hayaishi, O. (1973) J. Biol. Chem. 248, 8610–8612.PubMedGoogle Scholar
  12. 12.
    Knox, W.E., and Mehler, A.H. (1951) Science 113, 237–238.PubMedCrossRefGoogle Scholar
  13. 13.
    Feigelson, P., Feigelson, M., and Greengard, O. (1962) Recent Progr. Horm. Res. 18, 491–512.Google Scholar
  14. 14.
    Feigelson, P. and Greengard, O. (1962) J. Biol. Chem. 237, 3714–3717.Google Scholar
  15. 15.
    Schimke, R.T., Sweeney, E.W., and Berlin, C.M. (1965) J. Biol. Chem. 240, 322–331.PubMedGoogle Scholar
  16. 16.
    Feigelson, P., Beato, M., Colman, P., Kalimi, M., Killewich, L., and Schutz, G. (1975) Recent Progr. Horm. Res. 31, 231–242.Google Scholar
  17. 17.
    Schutz, G., Killewich, L., Chen, G., and Feigelson, P. (1975) Proc. Nat’l. Acad. Sci. USA 72, 1017–1020.CrossRefGoogle Scholar
  18. 18.
    Killewich, L., Schutz, G., and Feigelson, P. (1975) Proc. Nat. Acad. Sci. 72, 4285–4287.PubMedCrossRefGoogle Scholar
  19. 19.
    Feigelson, P., and Maeno, H. (1967) Biochem. & Biophys. Res. Commun. 28, 289–293.CrossRefGoogle Scholar
  20. 20.
    Forman, H.J., and Feigelson, P. (1972) J. Biol. Chem. 247, 256–259.PubMedGoogle Scholar
  21. 21.
    Schutz, G., Chow, E., and Feigelson, P. (1972) J. Biol. Chem. 247, 5333–5337.PubMedGoogle Scholar
  22. 22.
    Colman, P., Blanchet, S., Chow, E., and Feigelson, P. (1975) J. Biol. Chem., 250, 6208–6213.PubMedGoogle Scholar
  23. 23.
    Feigelson, P., Brady, F.O., and McCray, J.A. (1973) J. Biol. Chem. 248, 5267–5271.PubMedGoogle Scholar
  24. 24.
    Maeno, H., and Feigelson, P. (1967) J. Biol. Chem., 242, 596–601.PubMedGoogle Scholar
  25. 25.
    Brady, F.O., and Feigelson, P. (1975) J. Biol. Chem., 250, 5041–5048.PubMedGoogle Scholar
  26. 26.
    Ishimura, Y., Nazaki, M., Hayaishi, O., Tamura, M., and Yamazaki, I. (1970) J. Biol. Chem. 245, 3593–3602.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Philip Feigelson
    • 1
    • 2
  1. 1.The Institute of Cancer ResearchColumbia UniversityNew YorkUSA
  2. 2.Department Biochemistry, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations