Purification and Properties of Cytochrome P-450 from Adrenocortical Mitochondria and its Interaction with Adrenodoxin

  • Toshihiro Sugiyama
  • Retsu Miura
  • Toshio Yamano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


Cytochrome P-450s from mammalian sources have been purified to a homogeneous state by several groups, and highly purified cytochrome P-450 from bacterial origin has been obtained In a crystalline form. Among the mammalian P-450s, the one from adrenal mitochondria (Harding et al., 1964) is the easiest to solubilize and the hydroxylating system can be reconstituted with purified components.


Electron Paramagnetic Resonance Cholesterol Oxidase Side Chain Cleavage Soret Region Adrenodoxin Reductase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, N., and Horie, S. (1972), J. Biochem. 72, 583–597.PubMedGoogle Scholar
  2. Cheng, S.C., and Harding, B.W. (1973), J. Biol. Chem. 248, 7263–7271.PubMedGoogle Scholar
  3. Harding, B.W., Wong, S.H., and Nelson, D.H. (1964), Biochim. Biophys. Acta 92, 415–417.PubMedGoogle Scholar
  4. Horie, S., and Watanabe, T. (1975), J. Steroid Biochem. 6, 401–409.PubMedCrossRefGoogle Scholar
  5. Ichikawa, Y., Uemura, T., and Yamano, T. (1968), Structure and Function of Cytochromes (ed. Okunuki, K., Kamen, M.D., and Sekuzu, I.) University Tokyo Press and University Park Press, 634–644.Google Scholar
  6. Jefcoate, C.R., Hume, R., and Boyd, G.S. (1970), FEBS Lett. 9, 41–44.PubMedCrossRefGoogle Scholar
  7. Jefcoate, C.R., Simpson, E.R., and Boyd, G.S. (1973), Ann. New York Acad. Sci. 212, 243–261.CrossRefGoogle Scholar
  8. Kurono, A., and Hamaguchi, K. (1964), J. Biochem. 56, 432–440.Google Scholar
  9. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951), J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  10. Mattingly, D. (1962), J. Clin. Path. 15, 374–379.PubMedCrossRefGoogle Scholar
  11. Mitani, F., Ando, N., and Horie, S. (1973), Ann. New York Acad. Sci. 212, 208–224.CrossRefGoogle Scholar
  12. Omura, T., and Sato, R. (1964), J. Biol. Chem. 239, 2370–2378.PubMedGoogle Scholar
  13. Robinson, N.C., and Tanford, C. (1975), Biochemistry 14, 369–378.PubMedCrossRefGoogle Scholar
  14. Schleyer, H., Cooper, D.Y., Levin, S.S., and Rosenthal, O. (1972), Biological Hydroxylation Mechanisms (ed. Boyd, G.S., and Smellie, R.M.S.) Academic Press, 187–206.Google Scholar
  15. Shikita, M., and Hall, P.F. (1973), J. Biol. Chem. 248, 5598–5604; 5605–5609.PubMedGoogle Scholar
  16. Sugiyama, T., and Yamano, T. (1975), FEBS Lett. 52, 145–148.PubMedCrossRefGoogle Scholar
  17. Suhara, K., Takemori, S., and Katagiri, M. (1972), Biochim. Biophys. Acta 263, 272–278.PubMedCrossRefGoogle Scholar
  18. Wang, H.-P., Pfeiffer, D.R., Kimura, T., and Tchen, T.T. (1974), Biochem. Biophys. Res. Commun. 57, 93–99.PubMedCrossRefGoogle Scholar
  19. Weber, K., and Osborn, M. (1969), J. Biol. Chem. 224, 4406–4412.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Toshihiro Sugiyama
    • 1
  • Retsu Miura
    • 1
  • Toshio Yamano
    • 1
  1. 1.Department of BiochemistryOsaka University Medical SchoolKitaku, OsakaJapan

Personalised recommendations