Advertisement

Structural Investigations of the Environment of the Iron-Sulfur Cluster of the 2-Iron Ferredoxins

  • J. Drum
  • K. T. Yasunobu
  • R. E. Cramer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)

Abstract

Ferredoxins are a class of proteins involved in electron transfer reactions. Their distinguishing characteristics is the presence of sulfur-bound (“non-heme”) iron atoms through which electrons are carried. These proteins include the rubredoxins (1), which contain ~50 residues and a single iron, coordinated by 4 cysteines, as shown in Fig. 1A; the “clostridial” ferredoxins (2), possess ~60 residues and 2 active sites of the type shown in Fig. 1B; and the photosynthetic plant and algal ferredoxins (3) which have ~100 residues and an active site containing 2 irons, 2 labile sulfurs, and 4 cysteines. Adrenodoxin (4) and putidaredoxin (5) have similar iron-sulfur centers, though their sequences are quite dissimilar. The sequences of 7 of the 2-iron ferredoxins have been determined (6–12) and are illustrated in Fig. 2. Difference matrices, shown in Fig. 3, reveal a high degree of invariance and conservatism in these sequences. Horsetail (13) and Suringer (14) ferredoxins have also been partially sequenced, and both lack cysteine 18, indicating that cysteines 39, 44, 47, and 77 coordinate the iron-sulfur center.

Keywords

Aromatic Residue Ammonium Phosphate Ferredoxin Reductase Centrifuge Supernatant Aromatic Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sobel, B.E. & Lovenberg, W. Proc. Nat. Acad. Sci., 54, 1 (1965), 193.PubMedCrossRefGoogle Scholar
  2. 2.
    Lovenberg, W., Buchanan, B.B. & Rabinowitz, J.C. J. Biol. Chem., 238, 13 (1963), 3899.Google Scholar
  3. 3.
    San Pietro, A. & Lang, H.M. J. Biol. Chem., 231, 1 (1958), 211.Google Scholar
  4. 4.
    Kimura, T. & Ohno, H. J. Biochem. (Japan), 63, 3 (1968), 716.Google Scholar
  5. 5.
    Eaton, W., Palmer, G., Fee, J.A., Kimura, T. & Lovenberg, W. Proc. Nat. Acad. Sci., 68, 12 (1971), 3015.PubMedCrossRefGoogle Scholar
  6. 6.
    Rao, K.K. & Matsubara, H. Biochem. Biophys. Res. Commun., 38, 3 (1970), 500.PubMedCrossRefGoogle Scholar
  7. 7.
    Matsubara, H., Sasaki, R.M. & Chain, R.K. Proc. Nat. Acad. Sci., 57, 2 (1967), 439.PubMedCrossRefGoogle Scholar
  8. 8.
    Keresztes-Nagy, S. & Margoliash, E. J. Biol. Chem., 244, 4 (1969), 981.Google Scholar
  9. 9.
    Benson, A.M. & Yasunobu, K.T. J. Biol. Chem., 244, 4 (1969), 955.Google Scholar
  10. 10.
    Sugeno, K. & Matsubara, H. J. Biol. Chem., 244, 11 (1969), 2979.Google Scholar
  11. 11.
    Tanaka, M., Haniu, M., Zeitlin, S., Yasunobu, K.T., Evans, M.C.W., Rao, K.K. & Hall, D.O. Biochem. Biophys. Res. Commun., 64, 1 (1975), 399.PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka, M., Haniu, M., Yasunobu, K.T., Rao, K.K. & Hall, D.O. Unpublished Manuscript.Google Scholar
  13. 13.
    Kagamiyama, H., Rao, K.K., Hall, D.O., Cammack, R. & Matsubara, H. Biochem. J., 145, 1 (1975), 121.PubMedGoogle Scholar
  14. 14.
    Wada, K., Kamagiyama, H., Shin, M. & Matsubara, H. J. Biochem. (Japan), 76, 6 (1974), 1217.Google Scholar
  15. 15.
    Palmer, G., Sands, R.H. J. Biol. Chem., 241, 1 (1966), 253.Google Scholar
  16. 16.
    Tang, S.P.W., Spiro, T.G., Mukai, K. & Kimura, T. Biochem. Biophys. Res. Commun., 53, 3 (1973), 869.PubMedCrossRefGoogle Scholar
  17. 17.
    Mayberle, J.J., Frankel, R.B., Holm, R.H., Ibers, J.A., Phillips, W.D. & Weiher, J.F. Proc. Nat. Acad. Sci., 70, 8 (1973), 2429.CrossRefGoogle Scholar
  18. 18.
    Yamanaka, T., Takenami, S., Wada, K. & Okunuki, K. Biochem. Biophys. Acta, 180 (1969), 196.PubMedCrossRefGoogle Scholar
  19. 19.
    Rao, K.K. Phytochemistry, 8 (1969), 1379.CrossRefGoogle Scholar
  20. 20.
    Keresztes-Nagy, S. & Margoliash, E. J. Biol. Chem., 241, 24 (1966), 5955.Google Scholar
  21. 21.
    Shin, M. Methods Enzymol., 23 (l971), 440.CrossRefGoogle Scholar
  22. 22.
    Whatley, F.R. & Arnon, D.I. Methods Enzymol., 6 (1963), 308.CrossRefGoogle Scholar
  23. 23.
    Arnon, D.I. Plant Physiol., 24 (1949), 1.PubMedCrossRefGoogle Scholar
  24. 24.
    Allerhand, A., Cochran, D.W. 6c Doddrell, D. Proc. Nat. Acad. Sci., 67, 3 (1970), 1093.PubMedCrossRefGoogle Scholar
  25. 25.
    Gurd, F.R.N., Lawson, P.J., Cochran, D.W. & Wenker, E. J. Biol. Chem., 246, 11 (1971), 3725.Google Scholar
  26. 26.
    Packer, E.L., Sternleicht, H. & Rabinowitz, J.C. Proc. Nat. Acad. Sci., 69, 11 (1972), 3278.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • J. Drum
    • 1
  • K. T. Yasunobu
    • 1
  • R. E. Cramer
    • 2
  1. 1.Dept. of BiochemistryUniversity of HawaiiHonoluluUSA
  2. 2.Dept. of ChemistryUniversity of HawaiiHonoluluUSA

Personalised recommendations