Current Status of the Sequence Studies of the Pseudomonas Putida Camphor Hydroxylase System

  • Masaru Tanaka
  • Scott Zeitlin
  • Kerry T. Yasunobu
  • I. C. Gunsalus
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


A methylene hydroxylase system from camphor induced Pseudomonas putida has been separated into a putidaredoxin reductase, putidaredoxin (an iron-sulfur protein), and a hydroxylase fraction known as soluble cytochrome P-450 (1). This mixed function oxidase catalyzes the hydroxylation of methylene carbon 5 of camphor with reduced diphosphopyridine nucleotide as the primary electron donor and with molecular oxygen as the acceptor. The physicochemical and kinetic properties of the hydroxylase system are discussed in review articles by Gunsalus et al (2,3 and see articles by Gunsalus and Sligar in this book).


Hydroxylase System Putidaredoxin Reductase Bovine Adrenodoxin Reduce Diphosphopyridine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katagiri, M., Ganguli, B. N., and Gunsalus, I.C. (1968). J. Biol. Chem.243, 3543.PubMedGoogle Scholar
  2. 2.
    Gunsalus, I.C., Meeks, J.R., Lipscomb, J.D., Debrunner, P., and Munck, E. (1974) in Molecular Mechanisms of Oxygen Activation, ed, Hayaishi, O. (Academic Press, New York, N.Y.) pp. 559–613.Google Scholar
  3. 3.
    Gunsalus, I.C., Lipscomb, J.D., Marshall, V.P., Frauenfleder, H., Greehbaum, E., and Munck, E. (1972) in Biological Hydroxylation Mechanisms, ed. Boyd, G.S., and Smellie, R.M.S.Google Scholar
  4. 4.
    Schleyer, H., Cooper, D. Y., Levin, S.S., and Rosenthal, O. (1972), in Biological Hydroxylation Mechanisms, Boyd, G.S., and Smellie, R.M.S., ed., New York, Academic Press, p. 187.Google Scholar
  5. 5.
    Van der Hoeven, T.A., Haugen, D.A. and Coon, M.J. (1974). Biochem. Biophys. Res. Commun.60, 569.PubMedCrossRefGoogle Scholar
  6. 6.
    Dus, K., Katagiri, M., Yu, C-A., Erbes, D. L. and Gunsalus, I.C. (1970). Biochem. Biophys. Res. Commun. 40, 1423.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsai, R. L., Gunsalus, I.C, and Dus, K. (1971). Biochem. Biophys. Res. Commun.45, 1300.PubMedCrossRefGoogle Scholar
  8. 8.
    Crestfield, A. M., Moore, S., and Stein, W. H. (1963). J. Biol. Chem.238, 622.PubMedGoogle Scholar
  9. 9.
    Spackman, D. H., Moore, S., and Stein, W. H. (1963). J. Biol. Chem.238, 618.Google Scholar
  10. 10.
    Pisano, J.J., and Bronzert, T. J. (1969). J. Biol. Chem.244, 5597.PubMedGoogle Scholar
  11. 11.
    Edman, P., and Begg, G. (1967). Eur. J. Biochem.1, 80.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Orden, H. O., and Carpenter, F. H. (1964). Biochem. Biophys. Res. Commun.14, 399.PubMedCrossRefGoogle Scholar
  13. 13.
    Bradbury, J. H. (1958). Biochem. J.68, 475.PubMedGoogle Scholar
  14. 14.
    Ambler, R. B. (1967). Methods Enzymol.11, 436.CrossRefGoogle Scholar
  15. 15.
    Tanaka, M., Haniu, M., Yasunobu, K.T., Dus, K. and Gunsalus, I. C. (1974). J. Biol. Chem.249, 3689.PubMedGoogle Scholar
  16. 16.
    Sligar, S. G., Debrunner, P. O., Lipscomb, J. D., Namtvedt, M. J. and Gunsalus, I. C. (1974). Proc. Nat’l. Acad. Sci. U.S.71, 3906.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Masaru Tanaka
    • 1
  • Scott Zeitlin
    • 1
  • Kerry T. Yasunobu
    • 1
  • I. C. Gunsalus
    • 2
  1. 1.Dept. of Biochem-BiophysicsUniversity of Hawaii Medical SchoolHonoluluUSA
  2. 2.Dept. of BiochemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations