Heme Interactions in Pseudomonas Cytochrome Oxidase

  • David C. Wharton
  • Kristina Hill
  • Quentin H. Gibson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)


Pseudomonas cytochrome oxidase (ferrocytochrome c2:O2 oxido-reductase, EC functions as a terminal electron carrier in the bacterium Pseudomonas aeruginosa. The oxidase can donate electrons either to molecular oxygen or to nitrite although it appears that in situ it is intended to react with nitrite rather than 02 since the enzyme is only synthesized when the organism is grown anaerobically in the presence of nitrate or nitrite. However, since Pseudomonas cytochrome oxidase can catalyze the reduction of O2 to H2O (a four-electron transfer) it bears some similarity functionally to the cytochrome c oxidase of the mitochondrial respiratory chain.


Oxidase Activity Cytochrome Oxidase Slow Phase Mitochondrial Cytochrome Absorbance Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brunori, M., Parr, S. R., Greenwood, C., and Wilson, M. T. (1975) Biochem. J. 151, 185–188PubMedGoogle Scholar
  2. Gibson, Q. H., Greenwood, C., Wharton, D. C., and Palmer, G. (1965) J. Biol. Chem. 240, 888–894PubMedGoogle Scholar
  3. Griffith, J. S. (1956) Proc. Roy. Soc. Ser. A, 235, 23CrossRefGoogle Scholar
  4. Gudat, J. C., Singh, J. S., and Wharton, D. C. (1973) Biochim. Biophys. Acta 292, 376–390PubMedCrossRefGoogle Scholar
  5. Horio, T. (1958a) J. Biochem. (Tokyo) 45, 195–205Google Scholar
  6. Horio, T. (1958b) J. Biochem. (Tokyo) 45, 267–279Google Scholar
  7. Horio, T., Higashi, T., Matsubara, H., Kusai, K., Nakai, M., and Okunuki, K. (1958) Biochim. Biophys. Acta 29, 297–302PubMedCrossRefGoogle Scholar
  8. Horio, T., Higashi, T., Yamanaka, T., Matsubara, H., and Okunuki, K. (1961) J. Biol. Chem. 236, 944–951PubMedGoogle Scholar
  9. Kuronen, T. and Ellfolk, N. (1972) Biochim. Biophys. Acta 275, 308–318PubMedCrossRefGoogle Scholar
  10. Kuronen, T., Saraste, M., and Ellfolk, N. (1975) Biochim. Biophys. Acta 393, 48–54PubMedCrossRefGoogle Scholar
  11. Nagata, Y., Yamanaka, T., and Okunuki, K. (1970) Biochim. Biophys. Acta 221, 668–671PubMedCrossRefGoogle Scholar
  12. Orme-Johnson, N. R., Hansen, R. E., and Beinert, H. (1971) Biochem. Biophys. Res. Communs. 45, 871–878CrossRefGoogle Scholar
  13. Parr, S. R., Wilson, M. T., and Greenwood, C. (1975) Biochem. J. 151, 51–59PubMedGoogle Scholar
  14. Wharton, D. C., Gudat, J. C., and Gibson, Q. H. (1973) Biochim. Biophys. Acta 292, 611–620PubMedCrossRefGoogle Scholar
  15. Yamanaka, T., and Okunuki, K. (1963a) Biochim. Biophys. Acta 67, 379–393PubMedCrossRefGoogle Scholar
  16. Yamanaka, T., and Okunuki, K. (1963b) Biochem. Z. 338, 62–72PubMedGoogle Scholar
  17. Yamanaka, T., Kijimoti, S., Okunuki, K., and Kusai, K. (1962) Nature 194, 759–760PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • David C. Wharton
    • 1
    • 2
  • Kristina Hill
    • 1
    • 2
  • Quentin H. Gibson
    • 1
    • 2
  1. 1.Department of Biochemistry, Health Science CenterThe University of TexasSan AntonioUSA
  2. 2.Section of Biochemistry, Cell and Molecular BiologyCornell UniversityIthacaUSA

Personalised recommendations