Advertisement

Subunit Structure of Nonheme Iron-Containing Dioxygenases

  • Mitsuhiro Nozaki
  • Ryotaro Yoshida
  • Chieko Nakai
  • Masayoshi Iwaki
  • Yukikazu Saeki
  • Hiroyuki Kagamiyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 74)

Abstract

Dioxygenases are enzymes that catalyze the incorporation of two atoms of molecular oxygen into various substrates. These enzymes have been discovered in all types of living organisms and shown to perform a variety of functions. Among these, cleavage of the aromatic ring is one function that appears to depend largely, perhaps entirely, upon this type of enzyme. Cofactors involved in these enzymes are nonheme iron, heme or copper (1). The indole ring-cleaving enzyme, tryptophan 2,3-dioxygenase, is known to contain heme as a cofactor (2). A flavonol-cleaving enzyme, quercetinase, has been reported to be a copper protein (3). With the exception of these two enzymes, most of the other dioxygenases, if not all, contain nonheme iron as the cofactor. Among these, some enzymes contain the ferrous form of iron and some, the ferric form.

Keywords

Sodium Dodecyl Sulfate Ferric Iron Native Enzyme Subunit Structure Nonheme Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Nozaki, M. in Molecular Mechanisms of Oxygen Activation. Ed. by O. Hayaishi, Academic Press, Inc., New York, 1974, p. 135Google Scholar
  2. (2).
    Nozaki, M., and Ishimura, Y. in Microbial Iron Metabolism. Ed. by J. B. Neilands, Academic Press, Inc., New York, 1974, p. 417Google Scholar
  3. (3).
    Oka, T., and Simpson, F. J. (1971) Biochem. Biophys. Res. Commun. 43, 1PubMedCrossRefGoogle Scholar
  4. (4).
    Nozaki, M., Kotani, S., Ono, K., and Senoh, S. (1970) Biochim. Biophys. Acta 220, 213PubMedCrossRefGoogle Scholar
  5. (5).
    Fujisawa, H. , and Hayaishi, O. (1967) J. Biol. Chem. 243, 2673Google Scholar
  6. (6).
    Fujisawa, H. , Uyeda, M., Kojima, Y., Nozaki, M., and Hayaishi, O. (1972) J. Biol. Chem. 247, 4414Google Scholar
  7. (7).
    Edman, P., and Begg, G. (1967) Eur. J. Biochem. 1, 80PubMedCrossRefGoogle Scholar
  8. (8).
    Edman, P. (1956) Ann. N. Y. Acad. Sci. 88, 761Google Scholar
  9. (9).
    Stark, G. R., and Smyth, D. G. (1963) J. Biol. Chem. 238, 214PubMedGoogle Scholar
  10. (10).
    Narita, K. in Protein Sequence Determination. Ed. by S. B. Needleman, Springer-Verlag, 1970, p. 25Google Scholar
  11. (11).
    Hayashi, R., Moore, S., and Stein, W. H. (1973) J. Biol. Chem. 248, 2296PubMedGoogle Scholar
  12. (12).
    Braun, V., and Schroeder, W. A. (1967) Arch. Biochem. Biophys. 118, 241CrossRefGoogle Scholar
  13. (13).
    Matsuo, H., Fujimoto, Y., and Tatsuno, T. (1966) Biochem. Biophys. Res. Commun. 22, 69Google Scholar
  14. (14).
    Hayaishi, O., Katagiri, M., and Rothberg, S. (1955) J. Amer. Chem. Soc. 77, 5450CrossRefGoogle Scholar
  15. (15).
    Kojima, Y., Fujisawa, H., Nakazawa, A., Nakazawa, T., Kanetsuna, F., Taniuchi, H., Nozaki, M., and Hayaishi, O. (1967) J. Biol. Chem. 242, 3270PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Mitsuhiro Nozaki
    • 1
    • 2
  • Ryotaro Yoshida
    • 1
    • 2
    • 3
  • Chieko Nakai
    • 1
    • 2
    • 3
  • Masayoshi Iwaki
    • 1
    • 2
  • Yukikazu Saeki
    • 1
    • 2
  • Hiroyuki Kagamiyama
    • 1
    • 2
  1. 1.Department of Medical Chemistry, Faculty of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of BiochemistryOsaka University School of MedicineOsakaJapan
  3. 3.Department of BiochemistryShiga University of Medical ScienceShigaJapan

Personalised recommendations