Kinins pp 123-133 | Cite as

The Primary Structure of Pig Pancreatic Kallikrein B

  • H. Tschesche
  • W. Ehret
  • G. Godec
  • C. Hirschauer
  • C. Kutzbach
  • G. Schmidt-Kastner
  • F. Fiedler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 70)


Our studies on the amino acid sequence of pig pancreatic kallikrein B (EC have been performed with a preparation (1) that had been treated with neuraminidase to remove bound sialic acids. After reductive cleavage of the disulfide bridges and carboxymethylation, two peaks of UV-absorbing material could be separated by gel filtration on Sephadex G-75 in 50% acetic acid. According to gel electrophoresis, both were essentially homogeneous. Evidently, pig pancreatic kallikrein is composed of two chains presumably held together by disulfide bridges, as it had already been inferred from the presence of two amino terminal and two C-terminal amino acid residues (2).


Serine Proteinase Disulfide Bridge Cyanogen Bromide Ammonium Carbonate Porcine Trypsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Kutzbach and G. Schmidt-Kastner, Hoppe-Seyler’s Z. Physiol. Chem. 353. (1972) 1099–1106.PubMedCrossRefGoogle Scholar
  2. 2.
    F. Fiedler, C. Hirschauer, and E. Werle (1975) manuscript in preparation.Google Scholar
  3. 3.
    J. Porath, Nature 175 (1955) 478.PubMedCrossRefGoogle Scholar
  4. 4.
    M. Zuber and E. Sache, Biochemistry 13 (1974) 3098–3110.PubMedCrossRefGoogle Scholar
  5. 5.
    M. A. Hermodson, L.M. Ericsson, H. Neurath, and K.A. Walsh, Biochemistry 12 (1973) 3146–3153.PubMedCrossRefGoogle Scholar
  6. 6.
    B.S. Hartley and D.L. Kauffman, Biochem. J. 101 (1966) 229–231.PubMedGoogle Scholar
  7. 7.
    D.M. Blow, J.J. Birktoft, and B.S. Hartley, Nature 221 (1969) 337–340.PubMedCrossRefGoogle Scholar
  8. 8.
    R.M. Sweet, H.T. Wright, J. Janin, C.M. Chothia, and D.M. Blow, Biochemistry 13 (1974) 4212–4228.PubMedCrossRefGoogle Scholar
  9. 9.
    F. Fiedler, International Conference on Chemistry and Biology of the Kallikrein-Kinin-System in Health and Disease, Reston, Virginia, 1974, in press.Google Scholar
  10. 10.
    M. Krieger, L.M. Kay, and R.M. Stroud, J. Mol. Biol. 83 (1974) 209–230.PubMedCrossRefGoogle Scholar
  11. 11.
    F. Fiedler, G. Leysath, and E. Werle, Eur. J. Biochem. 36 (1973) 152–159.PubMedCrossRefGoogle Scholar
  12. 12.
    P.B. Sigler, D.M. Blow, B.W. Matthews, and R. Henderson, J. Mol. Biol. 35 (1968) 143–164.PubMedCrossRefGoogle Scholar
  13. 13.
    F. Fiedler, B. Muller, and E. Werle, Hoppe-Seyler’s Z. Physiol. Chem. 352 (1971) 1463–1464.PubMedCrossRefGoogle Scholar
  14. 14.
    B.S. Hartley, Phil. Trans. Roy. Soc. Lond. B 257, (1970) 77–87.Google Scholar
  15. 15.
    C. Kutzbach and G. Schmidt-Kastner In: Kininogenases-Kallikrein (G.L. Haberland and J.W. Rohen, eds.) F.K. Schattauer Verlag, Stuttgart-New York 1973, pp. 23–35.Google Scholar
  16. 16.
    L.J. Greene, J.J. DiCarlo, A.J. Sussman, and D.C. Bartelt, J. Biol. Chem. 243 (1968) 1804–1815.PubMedGoogle Scholar
  17. 17.
    J.P. Abita, M. Delaage, M. Lazdunski, and J. Savrda, Europ. J. Biochem. 8 (1969) 314–324.PubMedCrossRefGoogle Scholar
  18. 18.
    H. Fritz, I. Eckert, and E. Werle, Hoppe-Seyler’s Z. Physiol. Chem. 348 (1967) 1120–1132.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • H. Tschesche
    • 1
  • W. Ehret
    • 2
  • G. Godec
    • 1
  • C. Hirschauer
    • 2
  • C. Kutzbach
    • 3
  • G. Schmidt-Kastner
    • 3
  • F. Fiedler
    • 2
  1. 1.Institute of Organic ChemistryTechnical University of MunichGermany
  2. 2.Institute of Clinical Chemistry and Clinical BiochemistryUniversity of MunichGermany
  3. 3.Farbenfabriken Bayer AGElberfeldGermany

Personalised recommendations