Advertisement

Kinins pp 75-79 | Cite as

Inhibitors of Kinin-Forming Enzymes

  • Setsuro Fujii
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 70)

Abstract

The typical trypsin-like protease in animals were plasmin, kallikrein, thrombin, factor X, XI, XII, cathepsin B, plasminogen tissue activator and urokinase, and so on. Among them plasmin and kallikrein have kinin-forming activity. A synthetic reversible inhibitor of plasmin, and anticoagulant factor of blood, has been extensively studied. The first effective fibrinolytic inhibitor, ε-aminocaproic acid (εACA) was discovered by Okamoto, et al. in 1958 (1). This discovery was followed several years later in 1964 by an announcement of two additional inhibitors which were shown to possess greater potency; trans-4-aminomethyl-cyclohexanecarboxylic acid (trans-AMCHA [2]) and p-aminomethyl-benzoic acid (3).

Keywords

Aminocaproic Acid Active Plasmin Experimental Pancreatitis Phenyl Ester Anticoagulant Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okamoto A., et al Keio J. Med. 8: 211 (1959).CrossRefGoogle Scholar
  2. 2.
    Dubber, A.H.C., McNicol, G.P., Douglas, A.S., Melander, B. Lancet 11: 1317 (1964).CrossRefGoogle Scholar
  3. Dubber, A.H.C., McNicol, G.P., Douglas, A.S., Haemat, J. 11 237 (1965).Google Scholar
  4. Melander, B., Granstrand, G.B., Hanshoff, G., Acta Pharmacol. 22: 340 (1965).CrossRefGoogle Scholar
  5. 3.
    Markwardt E.F., Haustein, K.O., Klocking, H.P. Arch. int Pharmacodyn 152: 233 (1964).Google Scholar
  6. 4.
    Baumgarten, W., Priester, L.L., Stiller, D.W., Duncan, A.E.W., Ciminera, J.L., Loeffler, L.J. Throm. Diabetes Haemorrh., 22:263 (1969).Google Scholar
  7. 5.
    Muramatsu, M., Onishi, T., Fujii, S. Proceedings of Symposium on Chemical Physiology and Pathology, 3: 142 (1963)Google Scholar
  8. Muramatsu, M., Onishi, T., Sato, T., Makino, S., Hayakumo, Y., Kitajima, K., Fujii, S. Proceedings of Symposium on Chemical Physiology and Pathology, 3: 142 (1963).Google Scholar
  9. 6.
    Iwamoto, M., Abiko, Y., Shimizu, M. J. Biochem., 64: 759.Google Scholar
  10. (1968); Iwamoto M., Abiko, Y. J. Biochem., 65: 821 (1969).Google Scholar
  11. Abiko, Y., Iwamoto, M., Tomikawa, M. Biochim. Biophys. Acta 242: 203 (1971).Google Scholar
  12. 7.
    Muramatsu, M., Fujii, S. Biochim. Biophys. Acta 242: 203, (1971).Google Scholar
  13. Muramatsu, M., Fujii, S. Biochim Biophys. Acta 268: 221 (1972).Google Scholar
  14. 8.
    Hamberg, V., Stelwage, P., Ervast, H. Eur. J. Biochem. 40 439 (1973).PubMedCrossRefGoogle Scholar
  15. 9.
    Haines, A.L., Lepow, I.H. J. Immunol. 99.: 456 (1964).Google Scholar
  16. 10.
    Muramatsu, M., Shiraishi, S., Fujii, S. Biochim. Biophys. Acta 285: 224 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Setsuro Fujii
    • 1
  1. 1.Department of Enzyme Physiology, Institute for Enzyme Research, School of MedicineTokushima UniversityTokushimaJapan

Personalised recommendations