Brain Barrier Pathology in Acute Arterial Hypertension

  • Barbro Johansson
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Acute hypertension induced by various vasoactive substances can damage the blood-brain barrier (BBB) to protein in experimental animals. Thus, the brains from 27 out of 30 cats showed areas of extravasation of Evans blue-albumin after a systolic blood pressure increase exceeding 80 mm Hg induced by intravenous injection of metaraminol28. Similar lesions are seen in acute hypertension induced by angiotensin and noradrenaline. Approximately 70 per cent of rats developed BBB lesions after angiotension-provoked rise of the mean arterial blood pressure of 50–80 mm Hg 25 whereas a lower incidence has been reported in rabbits with the same vasoactive substance 6. The incidence of BBB lesions can be modified by several factors as will be discussed later. This might help to explain that some studies have failed to show permeability increase in acute hypertension (for a review of the literature see Johansson 197422.


Blood Pressure Increase Hypertensive Encephalopathy Acute Hypertension Pial Artery Acta Neuropath 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baylis, W.M., On the local reactions of the arterial wall to changes of internal pressure, J. Physiol., 28 (1902) 220–231.Google Scholar
  2. 2.
    Brightman, M.W., and Reese, T.S., Junctions between intimately apposed cell membranes in the vertebrate brain, J. Cell Biol., 40 (1969) 648–677.CrossRefGoogle Scholar
  3. 3.
    Broman, T., Supravital analysis of disorders in the cerebral vascular permeability in man, Acta med, scand., 118 (1944) 79–83.CrossRefGoogle Scholar
  4. 4.
    Byrom, F.B., The pathogensis of hypertensive encephalopathy and its relation to the malignant phase of hypertension: experimental evidence from the hypertensive rat. Lancet, 2 (1954) 201–211.CrossRefGoogle Scholar
  5. 5.
    Byrom, F.B., The hypertensive vascular crisis. An experimental study, Heinemann, London, 1969.Google Scholar
  6. 6.
    Dinsdale, H.B., Robertson, D.M., Chiang, T.Y., and Mukherjee, S.K., Hypertensive cerebral microinfarction and cerebrovascular reactivity, Europ. Neurol., 6 (1971/72) 29–33.CrossRefGoogle Scholar
  7. 7.
    Dinsdale, H.B., Robertson, D.M., and Haas, R.A., Cerebral blood flow in acute hypertension. Arch. Neurol., 31 (1974) 80–87.CrossRefGoogle Scholar
  8. 8.
    Ekstrom-Jodal, B., Haggendal, E., Linder, L.-E., and Nilsson, N.J., Cerebral blood flow autoregulation at high arterial pressures and different levels of carbon dioxide tension in dogs, Europ. Neurol., 6 (1971/72) 6–10.CrossRefGoogle Scholar
  9. 9.
    Ekstrom-Jodal, B., Haggendal, E., Johansson, B., Linder, L.-E., and Nilsson, N.J., Acute arterial hypertension and the blood- brain barrier. An experimental study in dogs. In, T.W. Langfitt, L.C. McHenry Jr., M. Reivich, H. Wollman, (Eds.) Cerebral Circulation and Metabolism, Springer-Verlag, New York (1975) pp. 7–9.CrossRefGoogle Scholar
  10. 10.
    Eto, T., Omae, T., and Yamamoto, T., An electron microscope study of hypertensive encephalopathy in the rat with renal hypertension, Arch, histol. jap., 33 (1971) 133–143.CrossRefGoogle Scholar
  11. 11.
    Fog, M., Cerebral circulation. II. Reaction of pial arteries to increase in blood pressure. Arch. Neurol. Psychiat., 41 (1939) 260–268.Google Scholar
  12. 12.
    Folkow, B., Hallback, M., Lundgren, Y., Sivertsson, R., and Weiss, L., Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and in soontaneously hypertensive rats, Circulat. Res., 32–33: Suppl. 1 (1973) 2–13.Google Scholar
  13. 13.
    Folkow, B., and Neil, E., Circulation Oxford University Press, New York, London, Toronto (1971) p. 46 ff.Google Scholar
  14. 14.
    Frank, O., Die Elastizität der Flutgefasse, Z. Biol., 71 (1920) 255–272.Google Scholar
  15. 15.
    Gannushkina, I.V., Shafranova, V.P., Dadiany, L.N., and Galayda, T.V., Mechanisms related to decrease of CBF during acute increase of arterial pressure in hypertensive animals. In, J.S. Meyer, H. Lechner, M. Reivich and O. Eichhorn (Eds.) Cerebral Vascular Disease, 6th International Conference, Saltzburg, 1972, George Thieme Publishers, Stuttgart (1973) pp. 84–86.Google Scholar
  16. 16.
    Gannushkina, I.V., and Shafranova, V.P., Some aspects of pathogenesis and pathomorphology of the hypertensive encephalopathy. Abstract. VIIth International Congress of Neuropathology, Budapest (1974) p. 100.Google Scholar
  17. 17.
    Giese, J., The pathogenesis of hypertensive vascular disease, Munksgaard, Copenhagen (1966).Google Scholar
  18. 18.
    Giacomelli, F., Wiener, J., and Spiro, D., The cellular pathology of experimental hypertension. V. Increased permeability of cerebral arterial vessels, Amer. J. Path., 59 (1970 133–159.Google Scholar
  19. 19.
    Hansson, H.A., Johansson, B., and Blomstrand, C., Ultrastructural studies on cerebrovascular permeability in acute hhpertension. Acta neuropath. (Berl.), 32 (1975) 187–198.CrossRefGoogle Scholar
  20. 20.
    Hossmann, K.-A., and Olsson, Y., Influence of ischemia on the passage of protein tracers across capillaries in certain blood- brain barrier injuries. Acta neuropath. (Berl.), 18 (1971) 113–122.CrossRefGoogle Scholar
  21. 21.
    Haggendal, E., and Johansson, B., Pathophysiology aspects of the blood brain barrier change in acute arterial hypertension, Europ. Neurol., 6 (1971/72) 24–28.Google Scholar
  22. 22.
    Johansson, B., Blood-brain barrier dysfunction in acute arterial hypertension. Thesis (1974) University of Goteborg.Google Scholar
  23. 23.
    Johansson, B., Regional cerebral blood flow in acute experimental hypertension. Acta neurol. scand., 50 (1974) 366–372.CrossRefGoogle Scholar
  24. 24.
    Johansson, B., Blood-brain barrier dysfunction in acute arterial hypertension after papaverine-induced vasodilation, Acta neurol. scand., 50 (1974) 573–580.CrossRefGoogle Scholar
  25. 25.
    Johansson, B., Cerebrovascular permeability after angiotensin- induced blood pressure increase in normotensive and spontaneously hypertensive rats. In, M. Harper, B. Jennett, D. Miller and J. Rowan, Blood Flow and Metabolism in the Brain. Churchill Livingstone, Edinburgh (1975) p. 53–57.Google Scholar
  26. 26.
    Johansson, B., and Borenstein, P., BBB lesions in acute hypertension after unilateral ligation of the carotid artery in rats (to be published).Google Scholar
  27. 27.
    Johansson, B., and Henning, M., The clinical effect of acute blood pressure increase in awake rats. A comparison between normotensive and spontaneously hypertensive rats, (to be published).Google Scholar
  28. 28.
    Johansson, B., Li, C.-L., Olsson, Y., and Klatzo, I., The effect of acute arterial hypertension on the blood-brain barrier to protein tracers, Acta neuropath (Berl.) 16 (1970) 117–124.CrossRefGoogle Scholar
  29. 29.
    Johansson, B., and Linder, L.-E., Blood brain barrier dysfunction in acute arterial hypertension induced by clamping of the thoracic aorta. Acta neurol. scand. 50 (1974) 360–365.CrossRefGoogle Scholar
  30. 30.
    Mathew, N.T., Meyer, J.S., and Hrastnik, F., Vasospasm versue “breakthrough” in the pathogenesis of hypertensive encephalopathy, In, M. Harper, B. Jennett, D. Miller and J. Rowan, Blood Flow and Metabolism in the Brain. Churchill Livingstone, Edinburgh (1975) p. 517–521.Google Scholar
  31. 31.
    Okamoto, K., and Aoki, K., Development of a strain of spontaneously hypertensive rats, Jap. Circulat. J., 27 (1963) 282–293.CrossRefGoogle Scholar
  32. 32.
    Okamoto, K., Yamori, Y., and Nagaoka, A., Establishment of the stroke-prone spontaneously hypertensive rat (SHR), Circulat. Res. Suppl. 1 34 (1974) 143–153.Google Scholar
  33. 33.
    Reese, T.S., and Karnovsky, M.J., Fine structural localization of a blood-brain barrier to exogenous peroxidase, J. Cell Biol., 34 (1967) 207–217.CrossRefGoogle Scholar
  34. 34.
    Robertson, A.L., and Khairallah, P.A., Effects of angiotensin II and some analogues on vascular permeability in the rabbit, Circulat. Res. 31 (1972) 923–931.Google Scholar
  35. 35.
    Rodda, R., and Denny-Brown, D., The cerebral arerioles in experimental hypertension. II. The development of arteriolo- necrosis, Amer. J. Path. 49 (1966) 365–381.Google Scholar
  36. 36.
    Skinhoj, E., and Strandgaard, S., Pathogenesis of hypertensive encephalopathy. Lancet, I (1973) 461–462.CrossRefGoogle Scholar
  37. 37.
    Smirk, F.H., and Hall, W.H., Inherited hypertension in rats, Nature (London), 182 (1958) 727–728.CrossRefGoogle Scholar
  38. 38.
    Steinwall, O., and Klatzo, I., Selective vulnerability of the blood brain barrier in chemically induced lesion, J. Neuropath, exp. Neurol., 25 (1966) 542–559.CrossRefGoogle Scholar
  39. 39.
    Strandgaard, S., Giesen, J., Skinhoj, E., and Lassen, N.A., Autoregulation of brain circulation in severe arterial hypertension, Brit, med. J. 1(1973) 507–510.CrossRefGoogle Scholar
  40. 40.
    Strandgaard, S., MacKenzie, E.T., Sengupta, D., Rowan, J.O., Lassen, N.A., and Harper, A.M., The upper limit for autoregulation of cerebral blood flow in the baboon, Circulato Res., 34 (1974) 435–440.Google Scholar
  41. 41.
    Westergaard, E., Brightman, M.S., Transport of proteins across normal cerebral arterioles, J. comp. Neurol. 152 (1973) 17–44.CrossRefGoogle Scholar
  42. 42.
    Westergaard, E., and Brøndsted, H.E., The effect of acute hyper- gension on the vesicular transport of proteins in cerebral vessels. Abstract. VIIth International Congress of Neuropathology, Budapest (1974) p. 322.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Barbro Johansson
    • 1
  1. 1.Department of Neurology, Sahlgren HospitalUniversity of GoteborgGoteborgSweden

Personalised recommendations