Pathological Aspects of Brain Transport Phenomena

  • Maria Spatz
  • Igor Klatzo
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Historically the extravasation of dye compounds such as Evans blue and fluorescein as dye albumin complexes into the brain have been the oldest acceptable indicators of blood brain barrier (BBB) injury11, 12, 35. Subsequently, among radiolabeled substances3, labeled albumin has been most commonly used for the quantitative, besides the qualitative, evaluation of BBB permeability to albumin in pathological conditions35, 49. More recently, fluorescein labeled serum protein30 and horseradish peroxidase48 (MW 40,000) have been introduced as tracers for the functional assessment of BBB status under various circumstances. All of these substances have a common denominator of enabling the investigation of one of the many probable parameters of BBB permeability; namely, the passage of proteins across the membrane barrier. Another dimension was added in clarifying the selective vulnerability BBB when altered brain uptake of nutrients was demonstrated in the experimentally damaged BBB55–57. However, for years elaborate quantitative investigations of brain transport phenomenon in disease have been limited due to lack of suitable methods for such a study.


Blood Brain Barrier Cerebral Blood Flow Cerebral Ischemia Brain Uptake Mongolian Gerbil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, J. P., Wasserman, A. J., Patterson, J. L., Detailed analysis of the cerebral vasoconstrictor response to oxygen in man. In R. W. R. Russell (Ed.), Brain and Blood Flow; Proceedings of the Fourth International Symposium on the Regulation of Cerebral Blood Flow, Pitman, London, 1971, pp. 332–335.Google Scholar
  2. 2.
    Balfour, D. J. K., and Gilbert, J. C., Studies of the respiration of S3niaptosomes, Biochemical Pharmacology, 20 (1971) 1151–1156.CrossRefGoogle Scholar
  3. 3.
    Bakay, L., The Blood-Brain Barrier with Special Regard to the Use of the Radioactive Isotopes, Chas. C. Thomas, Springfield, Ill., 1956.Google Scholar
  4. 4.
    Bartels, H., and Harms, H., Sauerstoffdissoziationskurven des Blutes von Saugetieren, Archives Gest Physiology, 268 (1959) 334–365.CrossRefGoogle Scholar
  5. 5.
    Berson, F. G., Spatz, M., and Klatzo, I., Effects of oxygen saturation and pCO2 on brain uptake of glucose analogues in rabbits, Stroke, (1975) in press.Google Scholar
  6. 6.
    Betz, A. L., Gilboe, D. D., and Drewes, L. R., Effects of anoxia on net uptake and unidirectional transport of glucose into the isolated dog brain. Brain Research, 67 (1974) 307–316.CrossRefGoogle Scholar
  7. 7.
    Betz, A. L., Gilboe, D. D., and Drewes, L. R., Kinetics of unidirectional leucine transport into brain: effects of isoleucine, valine and anoxia, American Journal of Physiology, 228 (1975) 895–900.Google Scholar
  8. 8.
    Bidder, T. G., Hexose translocation across the blood-brain interface: configurational aspects. Journal of Neurochemistry, 15 (1968) 867–874.CrossRefGoogle Scholar
  9. 9.
    Brightman, M. W., Hori, M., Rapoport, S. I., Reese, T. S., and Westergaard, E., Osmotic opening of tight junctions in cerebral endothelium. The Journal of Comparative Neurology, 152 (1973) 317–325.CrossRefGoogle Scholar
  10. 10.
    Brightman, M. W., Klatzo, I., Olsson, Y., and Reese, T. S., The blood-brain barrier to proteins under normal and pathological conditions. Journal of Neurological Sciences, 10 (1970) 215–239.CrossRefGoogle Scholar
  11. 11.
    Broman, T., and Lindberg-Broman, A. M., An experimental study of disorder in the permeability of cerebral vessels (the blood brain barrier) produced by chemical and physio-chemical agents, Acta Physiologica Scandinavica, 10 (1945) 1102–1125.CrossRefGoogle Scholar
  12. 12.
    Broman, T., The Permeability of Cerebrospinal Vessels in Normal and Pathological Conditions, Copenhagen, E. Munksgaard, 1949.Google Scholar
  13. 13.
    Chang, I., Ware, R. A., and Desnoyers, P. A., A histochemical study on some enzyme changes in the kidney, liver and brain after chronic mercury intoxication in rat. Food, Cosmetics and Toxicology, 11 (1973) 283–286.CrossRefGoogle Scholar
  14. 14.
    Clausen, T., Gleimann, J., Venten, J., and Kohn, P. G., Stimulating effect of hyperosmolarity on glucose transport in adipocytes and muscle cells, Biochimica et Biophysica Acta, 211 (1970) 233–243.CrossRefGoogle Scholar
  15. 15.
    Crone, C., Facilitated transfer of glucose from blood into brain tissue, Journal of Physiology, 181 (1965) 103–113.Google Scholar
  16. 16.
    Cutler, R. W. P., and Barlow, C. F., The effect of hypercapnia on brain permeability to protein, Archives of Neurology, 14 (1966) 54–63.CrossRefGoogle Scholar
  17. 17.
    Cutler, R. W. P., Lorenzo, A. U., and Barlow, Ch. F., Changes in blood brain barrier permeability during pharmacologically induced convulsions. Progress in Brain Research 29 (1968) 367–377.CrossRefGoogle Scholar
  18. 18.
    DeRobertis, E., and Rodriguez de Lores Arniaz, G., Structural components of the synaptic region. In A. Lajtha (Ed.), Handbook of Neurochemistry, Vol. II, Structural Neurochemistry. Plenum Publishing Co., New York, 1969, pp. 365–392.Google Scholar
  19. 19.
    Diamond, I., and Fishman, R. A., High-affinity transport and phosphorylation of 2-deoxy-D-glucose in synaptosomes, Journal of Neurochemistry, 20 (1973) 1533–1542.CrossRefGoogle Scholar
  20. 20.
    Eklof, B., Lassen, N. A., Nilsson, L., Norberg, K., Siesjo, B. K., and Torlof, P., Regional cerebral blood flow in the rat measured by the tissue sampling technique: a critical evaluation using four indicators C14-Antipyrine, C14-Ethanol, H3- water and Xenon, Acta Physiologica Scandinavica, 91 (1974) 1–10.CrossRefGoogle Scholar
  21. 21.
    Fujimoto, T., Berson, F., Spatz, M., and Klatzo, I., The effect of oxygen saturation and CO2 tension on amino acid brain uptake in the rabbit, unpublished observation (1975).Google Scholar
  22. 22.
    Goldstein, G. W., Wolinsky, J. S., and Diamond, I., Isolation of metabolically active capillaries from rat brain, Transactions of the American Society for Neurochemistry, Sixth Annual Meeting, 1975, pp. 277.Google Scholar
  23. 23.
    Haggendal, E., and Johansson, B., Effects of arterial carbon dioxide tension and O2 saturation on cerebral blood flow autoregulation in dogs. Acta Physiologica Scandinavica, 66 (1965) 27–53.CrossRefGoogle Scholar
  24. 24.
    Heaton, G. M., and Bachelard, H. S., The kinetic properties of hexose transport into synaptosomes from guniea pig cerebral cortex. Journal of Neurochemistry, 21 (1973) 1099–1108.CrossRefGoogle Scholar
  25. 25.
    Ito, U., Spatz, M., Walker, J. T., Jr., and Klatzo, I., Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations, Acta Neuropathologica (1975) 32: 209–223.CrossRefGoogle Scholar
  26. 26.
    Ito, U., Mrsulja, B. B., Fujimoto, T., Spatz, M., and Klatzo, I., Effects of increased systemic blood pressure on brain tissue subjected to ischemia. Proceedings of the International Symposium on Pathophysiological, Biochemical and Morphological Aspects of Cerebral Ischemia and Arterial Hypertension, (1976) in press.Google Scholar
  27. 27.
    Johansson, B., Li, C.-L, Olsson, Y., and Klatzo, I., The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropathologica, 16 (1970) 117–124.CrossRefGoogle Scholar
  28. 28.
    Joo, F., and Karusnina, I., A procedure for the isolation of capillaries from rat brain, Cytobios, 8 (1973) 41–48.Google Scholar
  29. 29.
    Kahn, K,, The natural course of experimental cerebral infarction in gerbil, Neurology, 22 (1972) 510–515.Google Scholar
  30. 30.
    Klatzo, I., Miquel, J., and Otenasek, R., The application of fluorescein labeled serum proteins (FLSP) to the study of vascular permeability in the brain, Acta Neuropathologica, 2 (1962) 144–160.CrossRefGoogle Scholar
  31. 31.
    Klatzo, I., Ito, U., Go, G., and Spatz, H., Observations on experimental cerebral ischemia in Mongolian gerbils. In J. Cervos-Navarro (Ed.), Pathology of Cerebral Microcirculation, Walter de Gruyter, Berlin, 1974, pp. 338–341.Google Scholar
  32. 32.
    Kipnis, D. M., and Cori, C. F., Studies of tissue permeability. V. The penetration and phosphorylation of 2-deoxy-D-glucose in the rat diaphragm. Journal of Biological Chemistry, 234 (1959) 171–177.Google Scholar
  33. 33.
    Kuzuya, T., Samols, E., and Williams, R. H., Stimulation by hyperosmolarity of glucose metabolism in rat adipose tissue and diaphragm in vitro. Journal of Biological Chemistry, 240 (1965) 2277–2283.Google Scholar
  34. 34.
    Lefevre, P. G., and Peters, A. A., Evidence of mediated transfer of monosaccharides from blood to brain in rodents. Journal of Neurochemistry, 13 (1966) 35–46.CrossRefGoogle Scholar
  35. 35.
    Moore, G. E., Diagnosis and Localization of Brain Tumors, Chas. Thomas, Springfield, 111., 1953.Google Scholar
  36. 36.
    Mrsulja, B. B., Mrsulja, B. J., Fujimoto, T., and Spatz, M., unpublished observation (1975).Google Scholar
  37. 37.
    Murray, J. E., Carrier-mediated transfer of amino acids from blood to brain. Neurology, 23 (1972) 940–944.Google Scholar
  38. 38.
    Narahara, H. T., and Ozand, F. J., Studies of tissue permeability. IX. Effect of insulin on the penetration of 3-methyl-glucose-3H in frog muscle. Journal of Biological Chemistry, 238 (1963) 40–49.Google Scholar
  39. 39.
    Neame, K. D., A comparison of the transport system for amino acids in brain, kidney and tumor. Progress in Brain Research, 29 (1968) 185–196.CrossRefGoogle Scholar
  40. 40.
    Oldendorf, W. H., Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Research, 24 (1970) 372–376.CrossRefGoogle Scholar
  41. 41.
    Oldendorf, W. H., Brain uptake of radiolabeled amino acid, amines and hexoses after arterial injection, American Journal of Physiology, 221 (1971) 1629–1639.Google Scholar
  42. 42.
    Pardridge, W. M., and Oldendorf, W. H., Kinetics of blood-brain barrier transport of hexoses, Biochimica et Biophysica Acta, 382 (1975) 377–392.CrossRefGoogle Scholar
  43. 43.
    Passow, H., Rothstein, A., and Clarkson, T. U., The general pharmacology of the heavy metals. Pharmacological Review, 13 (1961) 185–224.Google Scholar
  44. 44.
    Raichle, M. E., Eichling, J. O., and Grubb, R. L., Brain permeability of water. Archives of Neurology, 30 (1974) 319–321.CrossRefGoogle Scholar
  45. 45.
    Raichle, M. E., Eichling, J. O., Straatmann, M. G., Welch, M. J., and Ter-Pogossian, M. M., Blood brain barrier permeability of 11C-labeled alcohols and 15C-labeled water, Seventh International Symposium on Cerebral Blood Flow and Metabolism, Abstract, June 1975.Google Scholar
  46. 46.
    Rapoport, S. I., Hori, M., and Klatzo, I., Reversible osmotic opening of the BBB, Science, 173 (1971) 1026–1028.CrossRefGoogle Scholar
  47. 47.
    Rapoport, S. I., Hori, M., and Klatzo, I., Testing of a hypothesis for osmotic opening of the blood-brain barrier. American Journal of Physiology, 223 (1972) 323–331.Google Scholar
  48. 48.
    Reese, T. S., and Karnovsky, M. J., Fine structural localization of the blood brain barrier to exogenous peroxidase. Journal of Cell Biology, 34 (1967) 207–217.CrossRefGoogle Scholar
  49. 49.
    Rozdilsky, B., and Olszewski, J., Permeability of cerebral blood vessels studied by radioactive iodinated bovine albumin. Neurology, 9 (1957) 270–279.Google Scholar
  50. 50.
    Spatz, M., Berson, F., Fujimoto, T., and Klatzo, I., Transport of nutrients and non-nutrients across the blood-brain barrier in pathological conditions. Proceedings of Erwin Riesch Symposium on the Cerebral Vessel Wall (1975) in press.Google Scholar
  51. 51.
    Spatz, M., Go, G. K., and Klatzo, I., The effect of ischemia on the brain uptake of 14C glucose analogues and C sucrose. In J. Cervos-Navarro (Ed.), Pathology of Cerebral Microcirculation, Walter de Gruyter & Co., Berlin, 1974, pp. 361–366.Google Scholar
  52. 52.
    Spatz, M., Rap, Z. M., Rapoport, S. I., and Klatzo, I., The effects of hypertonic urea on the blood-brain barrier and on the glucose transport in the brain. In H. J. Reulen and K. Schurmann (Eds.), Steroids and Brain Edema, Springer-Verlag, Berlin, 1972, pp. 19–27.CrossRefGoogle Scholar
  53. 53.
    Spatz, M., Rap, Z. M., Rapoport, S. I., and Klatzo, I., Effects of hypertonic solutions and of HgCl2 on brain uptake of 14C glucose analogues. Neuropathology and Applied Neurobiology, (1975) in press.Google Scholar
  54. 54.
    Spatz, M., Mrsulja, B. B., Mrsulja, B. J., and Klatzo, I., Recovery of decreased synaptosomal 2-deoxy-D-(3H)-glucose uptake after cerebral ischemia in Mongolian gerbils. Brain Research, 1975 (in press).Google Scholar
  55. 55.
    Steinwall, O., and Klatzo, I., Selective vulnerability of the blood-brain barrier in clinically induced lesions. Journal of Neuropathology and Experimental Neurology, 25 (1966) 524–549.CrossRefGoogle Scholar
  56. 56.
    Steinwall, O., Transport inhibition phenomena in unilateral chemical injury of the blood-brain barrier. Progress in Brain Research, 29 (1968) 357–364.CrossRefGoogle Scholar
  57. 57.
    Steinwall, P., and Snyder, S. H., Brain uptake of C -cyclo- leucine after damage to blood-brain barrier by mercuricions. Acta Neurologica Scandinavica, 45 (1969) 369–375.CrossRefGoogle Scholar
  58. 58.
    Sterrett, P. R., Thompson, A. M., Chapman, A. L., and Matzke, H. A., The effects of hyperosmolarity on the blood-brain barrier. A morphological and physiological correlation. Brain Research, 77 (1974) 281–295.CrossRefGoogle Scholar
  59. 59.
    Thompson, A. M., Hyperosmotic effects on brain uptake of non- electrolytes. In C. C. Crone and N. Lassen (Eds.), Capillary Permeability, Alfred Benson, Symposium II. Munksgaard, Copenhagen, 1970, pp. 459–467.Google Scholar
  60. 60.
    Ware, R. A., Chang, L. W., and Burkholder, P. M., An ultra-structural study on the blood-brain barriex dysfunction following mercury intoxication. Acta Neuropathologica (Berlin), 30 (1974) 211–224.CrossRefGoogle Scholar
  61. 61.
    Westergaard, E., and Brøndsted, H. E., The effect of acute hypertension on the vesicular transport of proteins in cerebral vessels. Proceedings VII International Congress of Neuropathology, 1974.Google Scholar
  62. 62.
    Westergaard, E., Go, K. G., Klatzo, I., and Spatz, M., Enhanced vesicular transport of horseradish peroxidase across cerebral vessels in Mongolian gerbils induced by ischemia. Proceedings of the International Symposium on Pathophysiological, Biochemical and Morphological Aspects of Cerebral Ischemia and Arterial Hypertension, (1976) in press.Google Scholar
  63. 63.
    Whittaker, V. P., The synaptosome. In A. Lajtha (Ed.), Handbook of Neurochemistry Vol. II, Structural Neurochemistry. Plenum Publishing Co., New York, 1969, pp. 327–364.Google Scholar
  64. 64.
    Whittaker, V. P., and Barker, I. A., The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. In F. Ranier (Ed.), Methods of Neurochemistry, Vol. II, Marcel Dekker, Inc., New York, 1972, pp. 2–52.Google Scholar
  65. 65.
    Yudilevich, D. L., De Rose, N., and Sepulveda, F. V., Facilitated transport of amino acids through the blood-brain barrier of the dog studied in a single capillary circulation. Brain Research, 44 (1972) 569–578.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Maria Spatz
    • 1
  • Igor Klatzo
    • 1
  1. 1.NINCDS, National Institutes of HealthBethesdaUSA

Personalised recommendations