Skip to main content

Uptake of Neurotransmitters and Precursors by Clonal Cell Lines of Neural Origin

  • Chapter
  • First Online:
Transport Phenomena in the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 69))

Abstract

Intercellular communication is a fundamental process underlying behavior. The importance of communication between neurons in determining behavior is undisputed, but recent evidence suggests that communication between glia and neurons and between glia and other cell types may be of significance in the modulation of behavior. It is well established that the principal mode of inactivation of neurotransmitters, other than acetylcholine, is by reuptake into presynaptic terminals1. However, the close spatial relationships, of neurons and glia, and the glial ensheathment of axons and synapses, suggest that glia, as well as neurons, may participate in the uptake of synaptically released neurotransmitters2, 3 In so far as synaptic transmission depends in part on levels of the transmitter in the cleft, rapid removal of transmitter, either by neurons or glia, will influence or modulate efficacy of transmission. To demonstrate a significant glial role in the modulation of synaptic transmission, it is first necessary to show that glial cells possess mechanisms for the accumulation of transmitter which are comparable in substrate affinity to the pumps present in the specific nerve endings using that transmitter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, J., The metabolism, storage and release of catecholamines, Recent Prog. Hormone Res., 21 (1965) 597–622.

    CAS  Google Scholar 

  2. Curtis, R.D., and Johnston, G.A.R., Amino acid transmitters. In A. Lajtha (Ed), Handbook of Neurochemistry, Vol. 4, Plenum Press, New York and London, 1970.

    Google Scholar 

  3. Henn, F.A., and Hamberger, A., Glial cell function: Uptake of transmitter substances, Proc. Natl. Acad. Sei., 68 (1971) 2686–2690.

    Article  CAS  ADS  Google Scholar 

  4. Iversen, L.L. and Johnston, G.A.R., GABA uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effect of some inhibitors, J. Neurochem., 18 (1971) 1939–1950.

    Article  CAS  Google Scholar 

  5. Wofsey, A., Kuhar, M.J. and Snyder, S.H., A unique synaptosomal fraction which accumulates glutamic acid and aspartic acids in brain tissue. Proc. Natl. Acad. Sei., 68 (1971) 1102–1106.

    Article  CAS  ADS  Google Scholar 

  6. Benda, P., Someda, K., Messer, J. and Sweet, W.H., Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture, J. Neurosurg., 34 (1971) 310–323.

    Article  CAS  Google Scholar 

  7. Arregui, A., Logan, W.J., Bennett, J.P. and Snyder, S.H., Specific glycine accumulating synaptosomes in the spinal cord of rats, Proc. Natl. Acad. Sei., 69 (1972) 3485–3489.

    Article  CAS  ADS  Google Scholar 

  8. Richelson, E., and Thompson, E.J., Transport of neurotransmitter precursors into cultured cells. Nature New Biol., 241 (1973) 201–204.

    Article  CAS  Google Scholar 

  9. Hutchison, H.T., Werrbach, K., Vance, C. and Haber, B., Uptake of neurotransmitters by clonal lines of astrocytoma and neuroblastoma in culture: I. Transport of y-aminobutyric acid. Brain Research, 66 (1974) 265–274.

    Article  Google Scholar 

  10. Schrier, B., and Thompson, E.J., Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells, J. Biol. Chem., 249 (1974) 1769–1780.

    CAS  PubMed  Google Scholar 

  11. Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P., Choline uptake in neuroblastoma cell cultures: Influence of ionic environment. Pharm. Res. Commun., 5 (1973) 397.

    Article  CAS  Google Scholar 

  12. Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P., Kinetics of choline uptake in neuroblastoma clones, Biochem. Pharm., 23 (1974) 2857–2865.

    Article  CAS  Google Scholar 

  13. Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P., Choline uptake in glial cell cultures. Brain Research, 81 (1974) 361–363.

    Article  CAS  Google Scholar 

  14. Schubert, D., The uptake of GABA by clonal nerve and glia. Brain Research, 84 (1974) 87–98.

    Article  Google Scholar 

  15. Haber, B., Colmore, T., Werrbach, K. and Hutchison, H.T., Uptake of choline by clonal lines of astrocytoma and neuroblastoma in culture, Proc. Soc. Neuroscience, 42.8 (1973) 399.

    Google Scholar 

  16. Lanks, K., Somers, L., Papermeister, B., and Yamamura, H., Choline transport by neuroblastoma cells in tissue culture. Nature, 252 (1974) 476–478.

    Article  CAS  ADS  Google Scholar 

  17. Richelson, E., Studies on the transport of L-tyrosine into an adrenergic clone of neuroblastoma, J. Biol. Chem., 249 (1974) 6218–6224.

    CAS  PubMed  Google Scholar 

  18. Augusti-Tocco, G., and Sato, G., Establishment of functional clonal lines of neurons from mouse neuroblastoma, Proc. Natl. Acad. Sei., 64 (1969) 311–315.

    Article  CAS  ADS  Google Scholar 

  19. Benda, R., Lightbody, J., Sato, G., Levine, L., and Sweet, W.H., Differentiated rat glial cell strain in tissue culture. Science, 161 (1968) 370–371.

    Article  CAS  ADS  Google Scholar 

  20. Pfeiffer, S.E., Herschman, H.R., Lightbody, J., and Sato, G., Synthesis by a clonal line of rat glial cells of a protein unique to the nervous system, J. Cell. Comp. Physiol., 75 (1970) 329–339.

    Article  CAS  Google Scholar 

  21. Harris, A.J., Heinemann, S., Schubert, D., and Tarakis, H., Trophic interaction between clonal tissue culture lines of nerve and muscle. Nature, 231 (1970) 296–301.

    Article  ADS  Google Scholar 

  22. Schubert, D., Humphreys, S., de Vitry, F., and Jacob, F., Induced differentiation of a neuroblastoma, Devel. Biol., 25 (1971) 514–546.

    Article  CAS  Google Scholar 

  23. Kukes, G., deVellis, J., and Elul, R., A linked active transport system for Na+ and K+ in a glial cell line. Brain Research, 1975 (in press).

    Google Scholar 

  24. Kukes, G., Elul, R., and deVellis, J., The ionic basis of the membrane potential in a rat glial cell line, Brain Research, 1975 (in press).

    Google Scholar 

  25. Varon, S., Neurons and glia in neural cultures, Exp. Neurology, 48 (1975) 93–134.

    Article  CAS  Google Scholar 

  26. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J.H., Culp, W., and Brandt, B.L., Clonal cell lines from the rat central nervous system. Nature, 249 (1974) 224–227.

    Article  CAS  ADS  Google Scholar 

  27. Pfeiffer, S.E., and Wechsler, W., Biochemically differentiated neoplastic clone of Schwann cells, PNAS 69 (1972) 2885–2889.

    Article  CAS  ADS  Google Scholar 

  28. Hutchison, H.T., and Haber, B., Uptake of neurotransmitters by clonal lines of astrocytoma and neuroblastoma in culture. II. Estimation of kinetic parameters. Anal. Biochem., 1975 (in press).

    Google Scholar 

  29. Hofstee, B.H.J., On the evaluation of the constants Vm and Km in enzyme reactions. Science, 116 (1952) 329–331.

    Article  CAS  ADS  Google Scholar 

  30. Sellstrom, A. and Hamberger, A., Neuronal and glial systems for y-aminobutyric acid transport, J. Neurochem., 24 (1975) 847–852.

    Article  CAS  Google Scholar 

  31. Burry, R.W., and Lasher, R.S., Uptake of GABA in dispersed cell cultures of postnatal rat cerebellum: an electron microscope autoradiographic study. Brain Research, 88 (1975) 502–507.

    Article  CAS  Google Scholar 

  32. Schon, F., and Kelly, J.S., Autoradiographic localization of [3H] GABA, [3H] glutamate over satellite glial cells. Brain Research, 66 (1974) 275–288.

    Article  CAS  Google Scholar 

  33. Neal, M.J., and Iversen, L.L., Autoradiographic localization of 3H-GABA in rat retina. Nature, 235 (1972) 217–218.

    Article  CAS  Google Scholar 

  34. Orkand, P.M., and Kravitz, E.A., Localization of the sites of γ-aminobutyric (GABA) uptake in lobster nerve-muscle preparations, J. Cell Biol., 49 (1971) 75–89.

    Article  CAS  Google Scholar 

  35. Schon, F., Beart, P.M., Chapman, D., and Kelly, J.S., On GABA metabolism in the gliocyte cells of the rat pineal gland. Brain Research, 85 (1975) 479–490.

    Article  CAS  Google Scholar 

  36. Vernadakis, A., Accumulation of H3 norepinephrine in C6 glial cells in culture. The Physiologist, 18 (1975) 3.

    Google Scholar 

  37. Shinwari, M.A., and deVellis, J., Effects of Cortisol and norepinephrine on the uptake of analogs of amino acids and glucose into cultured glial cells, Trans. Amer.-Soc. Neuro- chem, 3 (1972) 121.

    Google Scholar 

  38. Haber, B., The effects of hydroxylamine and aminoxyacetic acid on the cerebral in vitro utilization of glucose, fructose, glutamic acid and γ-aminobutyric acid, Canad. J. Bio- chem., 43 (1965) 865–876.

    CAS  Google Scholar 

  39. Wallach, D.P., The inhibition of γ-aminobutyric acid, α-ketoglutaric acid transaminase in vivo and in vitro by U-7524 (aminooxyacetic acid), Biochem. Pharmacol., 5 (1961) 323–331.

    Article  CAS  Google Scholar 

  40. Levi, G., and Raiteri, M., Exchange of neurotransmitter amino acid at nerve endings can simulate high-affinity uptake. Nature, 250 (1974) 735–737.

    Article  CAS  ADS  Google Scholar 

  41. Bleeker, M. and Gfeller, E., Electron microscopic autoradiography of rat hypothalamus after in vitro incubation with 3H-taurine, Anat. Record, 172 (1972) 272–273.

    Google Scholar 

  42. Birks, R.I., and Macintosh, F.S., Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol., 39 (1961) 787.

    Article  CAS  Google Scholar 

  43. Browning, E.T., and Schulman, M.P., (14C) Acetylcholine synthesis by cortex slices of rat brain, J. Neuroehem., 15 (1968) 1391–1405.

    Article  CAS  Google Scholar 

  44. Kuhar, M.J., Sethy, V.H., Roth, R.H., and Aghajanian, G.K., Choline: Selective accumulation by central cholinergic neurons, J. Neurochem., 20 (1973) 581–593.

    Article  CAS  Google Scholar 

  45. Liang, C.C. and Quastel, J.H., Effects of drugs on the uptake of acetylcholine in rat brain cortex slices, Biochem. Pharmacol., 18 (1969) 1187–1194.

    CAS  Google Scholar 

  46. Polak, R.L., The influence of drugs on the uptake of acetylcholine by slices of rat cerebral cortex, Brit. J. Pharmacol., 36 (1969) 144–152.

    CAS  Google Scholar 

  47. Haga, T., and Nöda, H., Choline uptake systems of rat brain synaptosomes, Biochem. Biophys. Acta, 291 (1973) 564–575.

    CAS  Google Scholar 

  48. Yamamura, H., and Snyder, S., Choline: High-affinity uptake by rat brain synaptosomes, Science, 178 (1972) 626–628.

    Article  CAS  ADS  Google Scholar 

  49. Suddith, R.L., Hutchison, H.T., and Haber, B., Uptake of choline by clonal cell lines of neural origin: neuronal-glial differences, Trans. Am. Soc. for Neurochem., 6 (1975) 101.

    Google Scholar 

  50. Hutchison, H.T., Suddith, R.L., Risk, M. and Haber, B., Uptake of neurotransmitters and precursors by clonal lines of astrocytoma and neuroblastoma. III. Transport of choline. Neurochemical Research, 1975 (submitted).

    Google Scholar 

  51. Bruinvels, J., Role of sodium and potassium in the uptake of monoamines and their amino acid precursors in synaptosomes. Sixth Int. Cong. Pharmacol, 549 (1975) 1313.

    Google Scholar 

  52. Denis, M.J., and Miledi, R., Electrically induced release of acetylcholine from denervated Schwann cells, J. Physiol., 237 (1974) 431–452.

    Article  Google Scholar 

  53. Richelson, E., Studies on the transport of L-tyrosine into an adrenergic clone of mouse neuroblastoma, J. Biol. Chem., 249 (1974) 6218–6224.

    CAS  PubMed  Google Scholar 

  54. Oxender, D.L., and Christensen, H.N., Distinct mediating systems for transport of neutral amino acids by the Ehrlich cell, J. Biol. Chem., 238 (1963) 3686–3699.

    CAS  PubMed  Google Scholar 

  55. Haber, B., Suddith, R.L., and Hutchison, H.T., Uptake of biogenic amines by clonal cell lines of neural origin in culture. Am. Soc. for Neurochem., 6 (1975) 101.

    Google Scholar 

  56. Haber, B., Werrbach, K., Risk, M. and Hutchison, H.T., Uptake of serotonin by clonal lines of astrocytoma and neuroblastoma in culture. Fifth ISN Meeting, 1975, p. 169.

    Google Scholar 

  57. Vance, C., Ashkenazi, R. and Haber, B., Uptake of paramethoxy- phenylethylamine (PMPEA) by isolated synaptosomes vitro. Soc. for Neuroscience, 36.2 (1975) 928.

    Google Scholar 

  58. Narotzky, R. and Bondareff, W., Biogenic amines in cultured neuroblastoma and astrocytoma cells, J. Cell Biol., 63 (1974) 64–70.

    Article  CAS  Google Scholar 

  59. Bondareff, W. and Narotzky, R., Uptake of exogenous norepinephrine from corpus callosum by neurons of the cingulate cortex, Exp. Neurol., 34 (1972) 309–315.

    Article  CAS  Google Scholar 

  60. Silberstein, S.D., Shein, H.M. and Berv, K.R., Catechol-o-methyl transferase and monoamine oxidase activity in cultured rodent astrocytoma cells. Brain Research, 41 (1972) 245–248.

    Article  CAS  Google Scholar 

  61. Wong, D.T., Horng, J.F., Bymaster, F.P., Hauser, K.L., and Molloy, B.B., A selective inhibitor of serotonin uptake: Lilly 110140, 3-(P-trifluoromethylphenoxy)-N-methyl-3- phenolpropylamine. Life Sciences, 15 (1974) 471–479.

    Article  CAS  Google Scholar 

  62. Ashkenazi, R., and Haber, B., Inhibition of synaptosomal biogenic amine uptake by sympathomimetic amines, Proc. Soc. for Neuroscience, 29 (1974) 123.

    Google Scholar 

  63. Ashkenazi, R., and Haber, B., Mode of action of a sympathomimetic amine, paramethoxyphenylethylamine (PMPEA) in the mouse CNS: Release of biogenic amines, Neuroscience Letters, 1 (1975) 163–168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Haber, B., Hutchison, H.T. (1976). Uptake of Neurotransmitters and Precursors by Clonal Cell Lines of Neural Origin. In: Levi, G., Battistin, L., Lajtha, A. (eds) Transport Phenomena in the Nervous System. Advances in Experimental Medicine and Biology, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-3264-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3264-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-3266-4

  • Online ISBN: 978-1-4684-3264-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics