Penetration of Proteins in the Central Nervous System

  • Emanuel Levin
  • Carlos E. Tradatti
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


The subject of penetration of protein derivatives and other macromolecules into the CNS has no extensive literature; until recently it was assumed that such entry was practically negligible. The well known barrier phenomena for substances of lower molecular weight and less structural complexity suggested that exogenous proteins should normally be excluded from the CNS.


Nerve Growth Factor Tight Junction Protein Uptake Hypertonic Solution Exogenous Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brightman, M.W., Hori, M., Rapoport, S.I., Reese, T.S., and Westergaard, E., Osmotic opening of tight junctions in cerebral endothelium, J.Comp.Neurol., 152 (1973) 317–325.CrossRefGoogle Scholar
  2. 2.
    Brightman, M.W., Klatzo, I., Olsson, Y., and Reese, T.S., The blood-brain barrier to proteins under normal and pathological conditions, J.neurol.Sei., 10 (1970) 215–239.CrossRefGoogle Scholar
  3. 3.
    Brightman, M.W., and Reese, T.S., Junctions between intimately apposed cell membranes in the vertebrate brain, J.Cell Biol. 40 (1969) 648–677.CrossRefGoogle Scholar
  4. 4.
    Curran, R.E., Mosher, M.B., Owens, E.S., and Fernstermacher, J.D., Cerebrospinal fluid production determined by simultaneous albumin and inulin perfusion, Exptl.Neurol. 28 (1970) 257–265.CrossRefGoogle Scholar
  5. 5.
    Cutler, R.W.P., Ruthmary, K.D., and Barlow, C.F., Albumin exchange between plasma and cerebrospinal fluid. Arch.Neurol., 17 (1967) 261–270.CrossRefGoogle Scholar
  6. 6.
    Cutler, R.W.P., Murray, J.E., and Cornick, L.R., Variations in protein permeability in different regions of the cerebrospinal fluid, Exptl.Neurol., 28 (1970) 257–265.CrossRefGoogle Scholar
  7. 7.
    Cutler, R.W.P., and Barlow, C.F., The effect of hypercapnia on brain permeability to protein. Arch.Neurol., 14 (1966) 54–63.CrossRefGoogle Scholar
  8. 8.
    Davson, H., Physiology of the cerebrospinal fluid, Churchill Ltd., London, 1967, pp.271–292.Google Scholar
  9. 9.
    Hashimoto, P.H., Intracellular channels as a route for protein passage in the capillary endothelium of the shark brain. Am.J. Anat., 134 (1972) 41–58.CrossRefGoogle Scholar
  10. 10.
    Hendry, I.A., Stoekel, K., Thoenen, H., and Iversen, L.L., Retrograde axonal transport of the nerve growth factor. Brain Research, 68 (1974) 103–121.CrossRefGoogle Scholar
  11. 11.
    Hochwald, G.M., Malhan, C., and Brown, J., Effect of hypercapnia on CSF turnover and blood-CSF barrier to protein, Arch.Neurol. 28 (1973) 150-155.CrossRefGoogle Scholar
  12. 12.
    Hochwald, G.M., and Wallenstein, M., Exchange of albumin between blood, cerebrospinal fluid, and brain in the cat, Am.J.Physiol. 212 (1967) 1199-1204.Google Scholar
  13. 13.
    Hochwald, G.M., Wallenstein, M., and Mathews, E.S., Exchange of proteins between blood and spinal subarachnoid fluid, Am.J.Physiol., 217 (1969) 348-353.Google Scholar
  14. 14.
    King, C.A., A general study on the adsorption of protein by tissue, Bioch.Bioph.Acta, 154 (1968) 269-277.Google Scholar
  15. 15.
    Kristensson, K., Morphological studies of neural spread of herpes simplex virus to the central nervous system, Acta Neuropath., 16 (1970) 54-63.CrossRefGoogle Scholar
  16. 16.
    Levin, E., and Kleeman, C.R., Evidence of different compartments in the brain for extracellular markers, Am.J.Physiol., 221 (1971) 1319-1326.Google Scholar
  17. 17.
    Levin, E., and Sisson, W.B., The penetration of radiolabeled substances into rabbit brain from subarachnoid space, Brain Research, 41 (1972) 145-153.CrossRefGoogle Scholar
  18. 18.
    Lorenzo, A.V., Shirahige, I., Liang, M., and Barlow, C.F., Temporary alterations of cerebrovascular permeability to plasma proteins during drug induced seizures. Am.J.Physiol., 223 (1972) 268–277.Google Scholar
  19. 18a.
    Lowenthai, A., Chemical physiopathology of the cerebrospinal fluid. In A. Lajtha (Ed.). Handbook of Neurochemistry, Plenum Press, New York, 1972, vol.VII, pp.429–464.CrossRefGoogle Scholar
  20. 19.
    Lumsden, C.E., The proteins of cerebrospinal fluid in multiple sclerosis. In D. McAlpine, C.E. Lumsden and E.D. Acheson (Eds.), Multiple Sclerosis. A reappraisal. Livingstone Ltd., Edinburgh and London, 1965, pp.252–299.Google Scholar
  21. 20.
    Matsen, F.A.III, and West, C.R., Supracortical fluid: a monitor of albumin exchange in normal and injured brain. Am.J.Physiol., 22 (1972) 532–539.Google Scholar
  22. 21.
    Nauta, J.W., Kaiserman-Abramof, I.R., and Lasek, R.J., Electronmicroscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat: possible involvement of the agranular reticulum. Brain Research, 85 (1975) 373–384.CrossRefGoogle Scholar
  23. 22.
    Ochs, S., Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control, Ann.N.Y.Acad.Sei., 228 (1974) 202–223.CrossRefGoogle Scholar
  24. 23.
    Paravicini, U., Stoekel, K., and Thoenen, H., Biological importance of retrograde axonal transport of nerve growth factor in adrenergic neurons. Brain Research, 84 (1975) 279–291.CrossRefGoogle Scholar
  25. 24.
    Rapoport, S.I., Hori, M., and Klatzo, I., Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am. J., Physiol. 223 (1972) 323–331.Google Scholar
  26. 25.
    Rapoport, S.I., and Thompson, H.K., Osmotic opening of the blood- brain barrier in the monkey without associated neurological deficit, Science, 180 (1973) 971–9CrossRefGoogle Scholar
  27. 26.
    Rapoport, S.I., Thompson, H.K., and Bidinger, J.M., Equiosmolal opening of the blood-brain barrier in the rabbit by different contrast media. Acta Radiol.,15 (1974) 21–32.Google Scholar
  28. 27.
    Rasmussen, L.E., and Klatzo, I., Protein and enzyme changes in cold injury edema. Acta Neuropath. 13 (1969) 12–28.CrossRefGoogle Scholar
  29. 28.
    Reperant, J., The orthograde transport of horseradish peroxidase in the visual system. Brain Research, 85 (1975) 307–312.CrossRefGoogle Scholar
  30. 29.
    Schuller, E., Aspects actuels de la recherche sur les proteines du liquide cephalo-rachidien, Ann.Biol.Clin. (Paris), 30 (1972) 297–300.Google Scholar
  31. 30.
    Sterrett, P.R., Thompson, A.M., Chapman, A.L., and Matzke, H.A., The effects of hyperosmolarity on the blood-brain barrier. A morphological and physiological correlation, Brain Research, 77 (1974) 281–295.CrossRefGoogle Scholar
  32. 31.
    Westergaard, E., and Brightman, M.W., Transport of proteins across normal cerebral arterioles, J.Comp.Neurol. 152 (1973) 17–44.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Emanuel Levin
    • 1
    • 2
  • Carlos E. Tradatti
    • 1
    • 2
  1. 1.Instituto Nacional de Farmacología y BromatologíaCaserosUSA
  2. 2.Instituto Antártico ArgentinoBuenos AiresArgentina

Personalised recommendations