Mitogens as Probes of Lymphocyte Heterogeneity in Anuran Amphibians

  • S. N. Goldstine
  • N. H. Collins
  • N. Cohen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 64)


Based on functional and structural properties, lymphocytes from birds and mammals have been classified into thymus-derived T cell and bursa- or bone marrow-derived B cell populations. Indeed, we now recognize even further heterogeneity of each major population. For several years we have been interested in the phylogeny of such immuno-competent cells. Since ontogenetically all lymphocytes of the anuran amphibian are derived from a single organ source — the thymus (1) — we have focused our research efforts on determining whether comparable heterogeneity exists at this level of vertebrate evolution.


Peak Response Stimulation Index Tritiated Thymidine Cell Mitogen Rana Pipiens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turpen, J.B., Volpe, E.P. and Cohen, N., Science, 182:931 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    Andersson, J., Sjöberg, O., and Möller, G., Transplant. Rev., 11:131 (1972).PubMedGoogle Scholar
  3. 3.
    Sultzer, B.M., and Nilsson, B.S., Nat. New Biol., 240:198 (1972).PubMedGoogle Scholar
  4. 4.
    Strong, D.M., Ahmed, A.A., Scher, I., Knudsen, R.C. and Sell, K.W., J. Immunol., 113:1429 (1974).PubMedGoogle Scholar
  5. 5.
    Amphibians: Guideline for the Breeding, Care and Management of Laboratory Animals, Nat. Acad. Sci., Washington, D.C., p. 64 (1974).Google Scholar
  6. 6.
    DuPasquier, L., Chardonnens, X., and Miggiano, V.C., Immunogenetics, 1:482 (1975).CrossRefGoogle Scholar
  7. 7.
    Freed, J.J., and Mezger-Freed, L., Meth. Cell Physiol., 4:19 (1970).Google Scholar
  8. 8.
    Weiss, N., and DuPasquier, L., J. Immunol. Meth., 3:273 (1973).CrossRefGoogle Scholar
  9. 9.
    Coutinho, A., Möller, G., Andersson, J., and Bullock, W.W., Eur. J. Immunol., 3:299 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    Engers, H.D., MacDonald, H.R., Cerottini, J.-C., and Brunner, K.T., Eur. J. Immunol., 5:223 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    Broome, J.D., and Jeng, M.W., J. Exp. Med., 138:574 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    Sooy, L.E., and Mezger-Freed, L., Exp. Cell Res., 60:482 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    Scheffler, I.E., J. Cell Physiol., 83:219 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    McLimans, W.F., In: Growth, Nutrition, and Metabolism of Cells in Culture, Rothblat, G.H. and Cristofalo, V.J. (eds.) Academic Press, New York, N.Y. (1972) p. 137.CrossRefGoogle Scholar
  15. 15.
    Manning, M.J., and Collie, M.H., Adv. Exp. Med. Biol. (this vol.) (1975).Google Scholar
  16. 16.
    Turpen, J.B., Volpe, E.P., and Cohen, N., Amer. Zool., 15:51 (1975).Google Scholar
  17. 17.
    Cohen, N., Amer. Zool., 15:119 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • S. N. Goldstine
    • 1
  • N. H. Collins
    • 1
  • N. Cohen
    • 1
  1. 1.Departments of Dental Research and Microbiology, Division of ImmunologyThe University of Rochester, School of Medicine and DentistryRochesterUSA

Personalised recommendations