Ovalbumin mRNA and Ovalbumin DNA and the Molecular Biology of Steroid Hormone Action

  • Robert T. Schimke
  • David J. Shapiro
  • G. Stanley McKnight
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 241)


Certain steroid hormones, including estrogens, progesterone, and testosterone have profound effects on the development and function of the hen oviduct (Oka and Schimke, 1969a, b; O’Malley et al., 1969; Palmiter and Wrenn, 1971; Cox and Sauermein, 1970). Our attention has focused on hormonal regulation of ovalbumin synthesis, since this single polypeptide constitutes 50–60% of the protein synthesized in the fully differentiated oviduct, and its synthesis is under control by estrogens and progesterone. These features have allowed an analysis of the regulation at the molecular level, most specifically characterization and quantitation of the elements involved in specific protein synthesis, including polysomes, mRNA, and genes, in order to determine which of a myriad of potentially rate limiting steps is regulated by the hormones. We describe herein some of our more recent studies on the regulation of ovalbumin synthesis, including characterization of ovalbumin mRNA, and the use of nucleic acid hybridization techniques to analyze the mechanism of steroid hormone action.


Sucrose Gradient Rous Sarcoma Virus Estrogen Administration Estradiol Benzoate Primary Stimulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltimore, D., Jacobson, M.G., Asso, J. and Huang, AS. (1969). Cold Spring Harbor Symposium Biol. 34, 741.CrossRefGoogle Scholar
  2. Berns, T.J.M., Schrewis, AM., Van Kraaikamp, M.W.G. and Bloemendal, H. (1973). Eur. J. Biochem. 33, 551.CrossRefGoogle Scholar
  3. Birnstiel, M.L., Sells, B.H. and Purdom, I.F. (1972). J. Mol. Biol. 63, 21.Google Scholar
  4. Bishop, J.M. (1972). Karoliuska Symp. on Research Methods in Repro. Endo. 5 th Sym-posium, p. 247.Google Scholar
  5. Brawerman, G., Mendecki, J. and Lee, S.Y. (1972). Biochemistry 11, 637.CrossRefGoogle Scholar
  6. Breindl, M. and Galliwitz, D. (1973). Eur. J. Biochem. 32, 381.CrossRefGoogle Scholar
  7. Commerfold, S.L. (1971). Biochem. 10, 1993.CrossRefGoogle Scholar
  8. Cox, R.F. and Saueimein, H. (1970). J. Exptl Cell Res. 61, 79.CrossRefGoogle Scholar
  9. Darnell, J., Jelinek, W.R. and Malloy, G.R. (1973). Science 181, 1215.CrossRefGoogle Scholar
  10. Firtel, R.A. and Lodish, H.F. (1973). J. Mol Biol 79, 295.CrossRefGoogle Scholar
  11. Faras, A.J., Taylor, J.T., McDonnell, J.P., Levinson, W.E. and Bishop, J.M. (1972). Biochem. 11, 2334.CrossRefGoogle Scholar
  12. Imaizumi, T., Diggleman, H. and Scherrer, K. (1973). Proc. Nat Acad. Sci USA 70, 1122.CrossRefGoogle Scholar
  13. Mach, B., Faust, C. and Vasalii, P. (1973). Proc. Nat. Acad. Sci USA 70, 451.CrossRefGoogle Scholar
  14. Marcus, A., Efron, D. and Weeks, D.P. (1973). Methods in Enzymology, Vol. 30, Maldave, K. and Grossman, L. ( New York: Academic Press ), p. 749.Google Scholar
  15. McKnight, G.S., Pennequin, P. and Schimke, R.T. (Submitted for publication.)Google Scholar
  16. McKnight, G.S. and Schimke, R.T. (1974). Proc. Nat. Acad Sci. (In press.)Google Scholar
  17. Morse, D.E. and Yanofsky, C. (1968). J. Mol Biol 38, 447.CrossRefGoogle Scholar
  18. Oka, T. and Schimke, R.T. (1969a). J. Cell Biol 41, 816.CrossRefGoogle Scholar
  19. Oka, T. and Schimke, R.T. (1969b). J. Cell Biol 43, 123.CrossRefGoogle Scholar
  20. O’Malley, B.W., McGuire, W.L., Kohler, P.O. and Korenman, S.G. (1969). Rec. Prog. Horm. Res. 25, 105.Google Scholar
  21. Palacios, R., Palmiter, R.D. and Schimke, R.T. (1972). J. Biol Chem. 247, 2316.Google Scholar
  22. Palacios, R., Sullivan, D., Summers, N.M., Kiely, M.L. and Schimke, R.T. (1973). J. Biol Chem. 248, 540.Google Scholar
  23. Palmiter, RD. (1973). J. Biol Chem. 248, 8260.Google Scholar
  24. Palmiter, R.D. and Carey, N.H. (1974). Proc. Nat. Acad Sci 71, 2351.CrossRefGoogle Scholar
  25. Palmiter, R.D., Christensen, A.K. and Schimke, R.T. (1970). J. Biol Chem. 245, 833.Google Scholar
  26. Palmiter, R.D. and Gutman, G.A. (1972). J. Biol Chem. 247, 6459.Google Scholar
  27. Palmiter, R.D., Palacios, R. and Schimke, R.T. (1972). J. Biol Chem. 247, 3296.Google Scholar
  28. Palmiter, R.D. and Schimke, R.T. (1973). Biol Chem. 248, 1502.Google Scholar
  29. Palmiter, RD. and Wrenn, J. (1971). J. Cell Biol 50, 598.CrossRefGoogle Scholar
  30. Rhoads, R.E., McKnight, G.S. and Schimke, R.T. (1971). J. Biol Chem. 246, 7407.Google Scholar
  31. Rhoads, R.E., McKnight, G.S. and Schimke, R.T. (1973). J. Biol Chem. 248, 2031.Google Scholar
  32. Ruiz-Carillo, A., Beato, M., Schultz, G., Feigelson, P. (1972). Biochem. Biophys. Res. Commun. 49, 680.CrossRefGoogle Scholar
  33. Schaecter, I. (1974). Biochemistry 13, 1875.CrossRefGoogle Scholar
  34. Schimke, R.T., Palacios, R., Sullivan, D., Kiely, M.L., Gonzalez, C. and Taylor, J.M. (1973). Methods in Enzymology, Vol. 30, Maldave, K. and Grossman, L. ( New York: Academic Press ), p. 631.Google Scholar
  35. Shapiro, D.J. and Schimke, R.T. (1975). J. Biol Chem. 250, 1759.Google Scholar
  36. Shapiro, D.J., Taylor, J.M., McKnight, G.S., Palacios, R., Gonzalez, C., Kiely, M.L., and Schimke, R.T. (1974). J. Biol Chem. (In press.)Google Scholar
  37. Skoultchi, A. and Gross, P.R. (1973). Proc. Nat Acad. Sci. 70, 2840.CrossRefGoogle Scholar
  38. Strauss, J.H.Jr., Kelley, R.B. and Sensheimer, R.L. (1968). Biopolymers 6, 793.CrossRefGoogle Scholar
  39. Sullivan, D., Palacios, R., Stavnezer, J., Taylor, J., Faras, A., Kiely, M., Summers, M., Bishop, J. and Schimke, R.T. (1973). J. Biol Chem. 248, 7530.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Robert T. Schimke
    • 1
  • David J. Shapiro
    • 1
  • G. Stanley McKnight
    • 1
  1. 1.The Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations