mRNA Specific Initiation Factors in the Control of Protein Synthesis

  • M. Revel
  • Y. Groner
  • Y. Pollack
  • D. Cnaani
  • H. Zeller
  • U. Nudel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 44)


Before mRNA was discovered it was commonly accepted that ribosomes in cells are specialized for the synthesis of specific proteins. Following the demonstration that the information for the amino acid sequence is, in fact, in the mRNA, ribosomes began to be viewed as non-specific organelles, capable of translating indiscriminately all information brought to them by mRNA. If this concept is true, all the controls of gene expression which must come into action when a cell adapts to new environmental conditions should be exclusively at the level of mRNA synthesis (transcription and maturation). To determine if translation control is at all a possible mechanism for the control of gene expression, it is therefore important to establish whether or not ribosomes are capable of discriminating between mRNAs and of translating preferentially one or another of the mRNAs present in the cytoplasm. This question is of course most relevant for mammalian cells, in which we know that (1) stable mRNAs function for prolonged periods of time (1) and (2) that more mRNA is synthesized in the nucleus than is actually translated on the cytoplasmic polyribosomes (see Scherrer, this volume). Since, however, the mechanism of protein synthesis is known in more detail in E.coli, we have concentrated much of our efforts in studying mRNA discrimination by E.coli ribosomes. Our experiments over the past three years have clearly demonstrated the existence of ribosome-associated protein factors which make the ribosome specialized for specific mRNAs. Recently, we have isolated similar factors from mammalian cells; these results will be presented in the second part of this paper.


DEAE Cellulose Interference Factor Globin mRNA Globin Synthesis Mengo Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. REVEL & H.H. HIATT (1964). Proc. Natl. Acad. Sci. USA, 51, 810.PubMedCrossRefGoogle Scholar
  2. 2.
    M. REVEL, In: The mechanism of protein synthesis and its regulation, L. Bosh Ed., North-Holland Publ. Co., Amsterdam, London (1972) pp. 87–131.Google Scholar
  3. 3.
    M. REVEL, H. GREENSHPAN E M. HERZBERG (1970). Eur. J. Biochem. 16, 117.PubMedCrossRefGoogle Scholar
  4. 4.
    M. REVEL, Y. GRONER, Y. POLLACK, H. BERISSI & M. HERZBERG, In: Functional units in protein biosynthesis. (FEBS SYMPOSIUM) Acad. Press, New York, 23, (1972a) 237.Google Scholar
  5. 5.
    J.A. STEITZ (1969). Nature (London), 224, 967.CrossRefGoogle Scholar
  6. 6.
    Y. GRONER & M. REVEL (1971). Eur. J. Biochem. 22, 144.PubMedCrossRefGoogle Scholar
  7. 7.
    J.W.B. HERSHEY, E. REMOLD O’DONNELL, D. KOLAKOFSKY, K.F. DEWEY & R.E. THACH In: Methods in Enzymology, Moldave and Grossman Eds., Acad. Press, New York, 20, (1971) 235.Google Scholar
  8. 8.
    S. OCHOA (1968). Naturwissenschaften, 11, 505.CrossRefGoogle Scholar
  9. 9.
    A.R. SUBRAMANIAN & B.D. DAVIS (1971). Nature New Biol. 228, 1254.Google Scholar
  10. 10.
    H.F. LODISH (1970a). Nature, 226, 705.PubMedCrossRefGoogle Scholar
  11. 11.
    H.F. LODISH (1970b). J. Mol. Biol. 50, 689.PubMedCrossRefGoogle Scholar
  12. 12.
    Y. GRONER, Y. POLLACK, H. BERISSI & M. REVEL. (1972b). Nature New Biol. 239, 16.PubMedGoogle Scholar
  13. 13.
    Y. GRONER, Y. POLLACK, H. BERISSI & M. REVEL (1972a). FEBS LETTERS, 21, 223.PubMedCrossRefGoogle Scholar
  14. 14.
    H.F. LODISH (1969). Nature, 224, 867.PubMedCrossRefGoogle Scholar
  15. 15.
    S. LEE-IIUANG & S. OCHOA (1971). Nature New Biol. 234, 236.Google Scholar
  16. 16.
    M. YOSHIDA & P.S. RUDLAND (1972). J. Mol. Biol. 68, 465.PubMedCrossRefGoogle Scholar
  17. 17.
    H. BERISSI, Y. GRONER & M. REVEL. (1971). Nature New Biol. 234, 44.PubMedGoogle Scholar
  18. 18.
    M. REVEL, Y. POLLACK, Y. GRONER, R. SCHEPS, H. INOUYE, H. BERISSI & H. ZELLER In: Ribosomes, structures, function and biogenesis, FEBS Symposium, Vol. 27 (1972b) 261.Google Scholar
  19. 19.
    R. KAMEN, M. KONDO, W. ROMER & C. WEISSMANN (1972). Eur. J. Biochem. 31, 44.PubMedCrossRefGoogle Scholar
  20. 20.
    F.W. STUDIER (1972). Science, 176, 367.PubMedCrossRefGoogle Scholar
  21. 21.
    P. HERRLICH, M. SCIIWEIGER & W. SAUERBIER (1971). Molec. Gen. Genetics, 112,152.CrossRefGoogle Scholar
  22. 22.
    R.C. CALLAHAN & P. LEDER (1972). Arch. Biochem. Biophys. 153, 802.PubMedCrossRefGoogle Scholar
  23. 23.
    R. SCHEPS & M. REVEL (1972). Eur. J. Biochem. 29, 319.PubMedCrossRefGoogle Scholar
  24. 24.
    D.A. SHAFRITZ, P.M. PRICHARD & W.F. ANDERSON In: Methods in Molecular Biology, J.A. Last and A.I. Laskin, Eds., Marcel Dekker Inc., New york, 2,(1972) 265.Google Scholar
  25. 25.
    D.T. WIGGLE & A.E. SMITH (1973). Eur. J. Biochem. In press.Google Scholar
  26. 26.
    U. NUDEL, B. LEBLEU & M. REVEL (1973). Proc. Natl. Acad.Sci. USA, in press.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • M. Revel
    • 1
  • Y. Groner
    • 1
  • Y. Pollack
    • 1
  • D. Cnaani
    • 1
  • H. Zeller
    • 1
  • U. Nudel
    • 1
  1. 1.Department of BiochemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations