Thrombosis and Connective Tissue Interrelationships in Arteriosclerosis

  • Michael B. Stemerman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 43)


The growth of a thombus is determined by the combined influences of blood flow, blood constituents, and blood vessel (Virchow, 1860). Major attention has been given to the circulating elements of the blood which participate in thrombus formation. Studies of these elements have led to a detailed in vitro description of blood coagulation in terms of the physiologic reactivity of procoagulants and platelets. Recently, the biologic application of numerous synthetic materials has brought those concerned with thrombus formation to inquire in a detailed manner into the influence of blood flow. The use of these materials has attracted the expertise of bioengineers interested in the field of fluid mechanics. The effect has been an emerging, comprehensive description of the behavior of physiologic fluids relating to the pathophysiology of thrombus formation. Results from these disciplines have underscored the need to consider the role of the remaining affector of thrombogenesis — the vascular surface.


Collagen Fiber Thrombus Formation Platelet Adhesion Internal Elastic Lamina Blood Constituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgartner, H.R. (1963). Eine Neue Methode zur Erzeugung von Thromben durch gezielte Überdehnung der Gefässwand. Z. Ges. Exp. Med. 137, 227.PubMedCrossRefGoogle Scholar
  2. Baumgartner, H.R., and Haudenschild, C. (1972). Adhesion of platelets to subendothelium. Ann. N.Y. Acad. Sci. 201, 22.PubMedCrossRefGoogle Scholar
  3. Baumgartner, H.R., and Spaet, T.H. (1970). Endothelial replacement in rabbit arteries. Fed. Proc. 29, 710.Google Scholar
  4. Baumgartner, H.R., Stemerman, M.B., and Spaet, T.H. (1971). Adhesion of blood platelets to the subendothelial surface: Distinct from adhesion to collagen. Experientia 27, 282.CrossRefGoogle Scholar
  5. Bounameaux, Y. (1959). Accolement des plaquettes aux fibres sous endotheliales. C.R. Soc. Biol. 153, 865.Google Scholar
  6. Bruns, R.R.,and Palade, G. (1968). Studies on blood capillaries. I. General organization of blood capillaries in muscle. J. Cell Biol. 37, 244.PubMedCrossRefGoogle Scholar
  7. Gaynor, E. (1973). (Personal communication).Google Scholar
  8. Gloster, S. (1973). (Personal communication).Google Scholar
  9. Goldsmith, H.L. (1972). The flow of model particles in blood cells and its relation to thrombogenesis. In “Progress in Hemostasis and Thrombosis” (T.H. Spaet, ed.), Vol. I, p. 97139. Crune and Stratton, New York.Google Scholar
  10. Harker, L.A., and Slichter, S.J. (1970). Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. New Engl. J. Med. 283, 1302.PubMedCrossRefGoogle Scholar
  11. Hellem, A.J., Borchgrevink, C.F., and Ames, S.B. (1961). The role of red cells in hemostasis: The relationship between hematocrit, bleeding time and platelet adhesiveness. Brit. J. Haematol. 7, 42.CrossRefGoogle Scholar
  12. Hoff, H.F., and Gottlob, R. (1968). Ultrastructural changes of large rabbit blood vessels following mild mechanical trauma. Virchows Arch. Abt. A. 345, 93.Google Scholar
  13. Hovig, T., and Holmsen, H. (1963). Release of platelet aggregation substance (adenosine diphosphate) from rabbit blood platelets induced by saline “extracts” of tendons. Thromb. Diath. Haemorrh. 9, 264.Google Scholar
  14. Hugues, J. (1960). Accolement des plaquettes au collagene. C.R. Soc. Biol. 154, 866.Google Scholar
  15. Karrer, H.E. (1961). An electron microscopic study of the aorta in young and in aging mice. J. Ultrastruct. Res. 5, 1.PubMedCrossRefGoogle Scholar
  16. Kjaerheim, A., and Hovig, T. (1962). The ultrastructure of haemostatic blood platelet plugs in rabbit mesenterium. Thromb. Diath. Haemorrh. 7, 1.Google Scholar
  17. Krakower, C.A., and Greenspon, S.A. (1964). The antigen of capillary venular basement membranes elucidated by the use of lens capsule. In “Small Blood Vessel Involvement in Diabetes Mellitus.” Proceedings of the Conference on Small Vessel Involvement in Diabetes Mellitus Held at Airlie House, Warrenton, Virginia, 1963. ( M.D. Siperstein et al., eds.), p. 161. Amer. Inst. Biol. Sci. Publ., Washington, D.C.Google Scholar
  18. Kuhnel, W. (1966). Electronenmikroskopische Untersuchungen über den unterschiedlichen Bau der Herzklappen. I. Mitteilung, Mitralis und Aortenklappe. Z. Zellforsch. 69, 452.PubMedCrossRefGoogle Scholar
  19. Legrand, Y., Caen, J., and Robert, L. (1967). Collagens purifies et plaquettes sanguines(effet de certains “usides” sur l’adhesion et l’aggregation plaquettaire). Nouv. Rev. Fr. Hematol. 7, 879.PubMedGoogle Scholar
  20. Luft, J.H. (1963). Fine structure of the vascular wall. In Evolution of the Atherosclerotic Plaque” ( R.J. Jones, ed.), p. 3. University of Chicago Press, Chicago, Illinois.Google Scholar
  21. Majno, G., and Palade, G.E. (1961). Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability. An electron microscopic study. J. Biophys. Biochem. Cytol. 11, 571.Google Scholar
  22. Marcus, A. (1969). Platelet function. New Engl. J. Med. 280, 1330.PubMedCrossRefGoogle Scholar
  23. Movat, H.A., More, R.H., and Haust, M.D. (1958). The diffuse intimal thickening of the human aorta with aging. Amer. J. Pathol. 34, 1023.Google Scholar
  24. Muir, H., and Mustard, J.F. (1968). Enhancement of platelet aggregation by glucosaminoglycans (mucopolysaccharides). In “Le Role de la Paroi Arterielle dans l’Atherogenese,” p. 589. Centre National de la Recherche Scientifique, Paris. Colloques internationaux, No. 169.Google Scholar
  25. Owren, P.A. (1964). Nutrition and thrombosing atherosclerosis. Bibl. Nutr. Dieta. 6, 156.Google Scholar
  26. Pierce, G.B. (1966). The development of basement membranes of the mouse embryo. Develop. Biol. 13, 231.PubMedCrossRefGoogle Scholar
  27. Rhodini, J.A.G. (1968). Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J. Ultrastruct. Res. 24, 425.Google Scholar
  28. Ross, R., and Bornstein, P. (1969). The elastic fiber. I. The separation and partial characterization of its macromolecular components. J. Cell Biol. 40, 366.PubMedCrossRefGoogle Scholar
  29. Schwartz, S.M., and Benditt, E.P. (1972). Studies on aortic intima. I. Structure and permeability of rat thoracic aortic intima. Amer. J. Pathol. 241, 66.Google Scholar
  30. Schwartz, S.M., Stemerman, M.B., and Benditt. (In preparation). The aortic intima. II. Cells of regeneration of the rat aortic intima.Google Scholar
  31. Spaet, T.H. (1973). (Personal communication).Google Scholar
  32. Spaet, T.H., and Erichson, R.B. (1966). The vascular wall in the pathogenesis of thrombosis. Thromb. Diath. Haemorrh. Suppl. 21, 67.Google Scholar
  33. Stehbens, W.E., and Biscoe, T.J. (1967). The ultrastructure of early platelet aggregation in vivo. Amer. J. Pathol. 50, 219.Google Scholar
  34. Stemerman, M.B. (1973). Thrombogenesis of the rabbit arterial plaque: An electron microscopic study. Amer. J. Path 73, 7.PubMedGoogle Scholar
  35. Stemerman, M.B., Baumgartner, H.R., and Spaet, T.H. (1971). The subendothelial microfibril and platelet adhesion. Lab. Invest. 24, 179.PubMedGoogle Scholar
  36. Stemerman, M.B., and Ross, R. (1972). Experimental arteriosclerosis. I. Fibrous plaque formation in primates, an electron microscopic study. J. Exp. Med. 136, 769.PubMedCrossRefGoogle Scholar
  37. Stemerman, M.B., and Spaet, T.H. (1972). The subendothelium and thrombogensis Bull. N.Y. Acad. Med. 48: 2, 289PubMedGoogle Scholar
  38. Studer, A. (1966). Experimental platelet thrombus. Thromb. Diath. Haemorrh. Suppl. 21, 109.Google Scholar
  39. Suresh, A., Stemerman, M.B., and Spaet, T.H. (1973). Thrombogenicity of rabbit heart valves: Low platelet reactivity. Blood 41, 359.PubMedGoogle Scholar
  40. Tranzer, J.P., and Baumgartner, H.R. (1967). Filling gaps in the vascular endothelium with blood platelets. Nature 216, 1126.PubMedCrossRefGoogle Scholar
  41. Virchow, R.L.K. (1860). In “Cellular Pathology,” p. 230. Robert M. De Witt, New York.Google Scholar
  42. Wilner, G.D., Nossel, H.L., and Le-Roy, E.C. (1968). Activation of Hageman factor by collagen. J. Clin. Invest. 47, 2608.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Michael B. Stemerman
    • 1
  1. 1.Division of Hematology, Montefiore Hospital and Medical CenterAlbert Einstein College of MedicineBronxUSA

Personalised recommendations