Chemistry of Iron in Biological Systems

  • J. B. Neilands
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 40)


Iron compounds in biology can be classified in various ways. An organization of these substances based on source—whether microbial, plant, or animal — is certain to suffer from considerable redundancy. Thus, the iron porphyrins, and even more so, the ferredoxins are widely distributed on a phylogenetic basis. I have elected to present this material on the themes of structure and function. First, some relevant properties of iron will be recalled to memory. Then the diversified roles of iron in living systems will be enumerated. Finally, the structures of the lower and higher molecular weight compounds of iron will be discussed.


Iron Compound Raney Nickel Iron Porphyrin Iron Sulfur Protein Strong Field Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, H. A. and Neilands, J. B. (1973), Biochemistry, in press.Google Scholar
  2. Anke, T. and Diekmann, H. (1972), FEBS Letters, 27, 259.PubMedCrossRefGoogle Scholar
  3. Arrieta, L. and Grez, R. (1971), Appl. Microbiol., 22, 487.PubMedGoogle Scholar
  4. Benemann, J. R. and Valentine, R. (1972), Adv. Microbial Physiol., 8, 59.CrossRefGoogle Scholar
  5. Bitar, K. G., Vinogradov, S. N., Nolan, C., Weiss, L. J., and Margoliash, E. (1972), Biochem. J., 129, 561.PubMedGoogle Scholar
  6. Bowen, H. J. M. (1966), Trace Elements in Biochemistry, London: Academic Press.Google Scholar
  7. Burbridge, E. M., Burbridge, G. R., Fowler, W. A., and Hoyle, F. (1957), Rev. Mod. Physics, 29, 547.Google Scholar
  8. Candeloro, S., Grdenic, D., Taylor, N., Thompson, B., Viswamitra, M., and Crowfoot-Hodgkin, D. (1969), Nature, 224, 589.PubMedCrossRefGoogle Scholar
  9. Carter, C. W., Kraut, J., Freer, S. T., Alden, R. A., Sieker, L. C., Adman, E., and Jensen, L. H. (1972), Proc. Nat. Acad. Sci. U. S., 69, 3526.CrossRefGoogle Scholar
  10. Caughey, W. S. (1971), Bioinorganic Chemistry, R. Dessy, J. Dillard, and L. Taylor, eds., Washington, D. C.: American Chemical Society.Google Scholar
  11. Curran, H. R., Brunstetter, B. C., and Meyers, A. T. (1943), J. Bacteriol., 45, 485.PubMedGoogle Scholar
  12. Dawson, J. W., Gray, H. B., Rossman, G. R., Schredder, J. M., and Wang, R. H. (1972), Biochemistry, 11, 461.PubMedCrossRefGoogle Scholar
  13. Dessy, R., Dillard, J., and Taylor, L., eds. (1971), Bioinorganic Chemistry, Washington, D. C.: American Chemical Society.Google Scholar
  14. Dickerson, R. E. (1972), Scient. Amer., April.Google Scholar
  15. Dickerson, R. E., Takano, T., and Kallai, O. B. (1972), Fifth Jerusalem Symposium, B. Pullman and E. D. Bergmann, eds., in press.Google Scholar
  16. Donella, L., Pinna, A., and Moret, V. (1972), FEBS Letters, 26, 249.PubMedCrossRefGoogle Scholar
  17. Eichhorn, G., ed. (1973), Inorganic Biochemistry, Amsterdam: Elsevier.Google Scholar
  18. Ellfolk, N. (1972), Endeavour, 31, 139.Google Scholar
  19. Emery, T. F. (1973), Microbial Iron Metabolism, J. B. Neilands, ed., New York: Academic Press.Google Scholar
  20. Falk, J. E. (1964), Porphyrins and Metalloporphyrins, Amsterdam: Elsevier.Google Scholar
  21. Gofman, J. W. and Tamplin, A. R. (1971), Poisoned Power, Emmaus, Pa.: Rodale Press.Google Scholar
  22. Greengard, O., Sentenac, A., and Mendelsohn, N. (1964), Biochem. Biophys. Acta, 90, 406.PubMedCrossRefGoogle Scholar
  23. Hall, D. O., Cammack, R., and Rao, K. K. (1971), Nature, 233, 136.PubMedCrossRefGoogle Scholar
  24. Hallberg, L., Harwerth, H. G., and Vannotti, A., eds. (1970), Iron Deficiency, New York: Academic Press.Google Scholar
  25. Harrison, P. M. (1971), Clin. Toxicol., 4, 529.PubMedCrossRefGoogle Scholar
  26. Herriott, J. R., Sieker, L. C., Jensen, L. H., and Lovenberg, W. (1970), J. Mol. Biol., 50, 391.PubMedCrossRefGoogle Scholar
  27. Herskovitz, T., Averill, B. A., Holm, R. H., Ibers, J. A., Phillips, W. D., and Weiher, J. F. (1972), Proc. Nat. Acad. Sci. U. S., 69, 2437.CrossRefGoogle Scholar
  28. Hoard, J. L. (1971), Science, 174, 1295.PubMedCrossRefGoogle Scholar
  29. Hutner, S. H. (1972), Annual Reviews of Microbiology, vol. 26, C. E. Clifton, ed., Palo Alto, California: Annual Reviews, Inc., pp. 313–346.Google Scholar
  30. Iskandar, I. K. and Syers, J. K. (1972), J. Soil Sci., 23, 255.CrossRefGoogle Scholar
  31. Isowa, Y., Takashima, T., Ohmori, M., Kurita, H., Sato, M., and Mori, K. (1972), Bull. Chem. Soc. Japan, 45, 1461.CrossRefGoogle Scholar
  32. Karlström, O. (1972), Doctoral Dissertation, Royal Technical High School, Stockholm, Sweden.Google Scholar
  33. Kassner, R. J. (1972), Proc. Nat. Acad. Sci. U. S., 69, 2263.CrossRefGoogle Scholar
  34. Keilin, D. (1966), The History of Cell Respiration and Cytochromes, New York: Cambridge University Press.Google Scholar
  35. Klotz, I. M. (1971), Subunits in Biological Systems, S. N. Timasheff and G. D. Fasman, eds., New York: Marcel Dekker.Google Scholar
  36. Lemberg, R. and Barrett, J. (1972), The Cytochromes, New York: Academic Press.Google Scholar
  37. Linke, W. D., Crueger, A., and Diekmann, H. (1972), Arch. Mikrobiol., 85, 44.PubMedCrossRefGoogle Scholar
  38. Llinas, M., Klein, M. P., and Neilands, J. B. (1972), J. Mol. Biol., 68, 265.PubMedCrossRefGoogle Scholar
  39. Llinas, M. and Neilands, J. B. (1973), Bioinorganic Chem., 2, 159–165.CrossRefGoogle Scholar
  40. Luckey, M., Pollack, J. R., Wayne, R., Ames, B. N., and Neilands, J. B. (1972), J. Bacteriol., 111, 731.PubMedGoogle Scholar
  41. Marks, G. S. (1969), Heme and Chlorophyll, London: Van Nostrand.Google Scholar
  42. Miller, R. E. (1973), Microbial Iron Metabolism, J. B. Neilands, ed., New York: Academic Press.Google Scholar
  43. Mullis, K. B., Pollack, J. R., and Neilands, J. B. (1971), Biochemistry, 10, 4894.PubMedCrossRefGoogle Scholar
  44. Neilands, J. B. (1957), Bact. Rev., 21, 101.PubMedGoogle Scholar
  45. Neilands, J. B. (1972), Structure and Bonding, 11, 145.CrossRefGoogle Scholar
  46. Neilands, J. B., ed. (1973a), Microbial Iron Metabolism, New York: Academic Press.Google Scholar
  47. Neilands, J. B. (1973b), Inorganic Biochemistry, G. Eichhorn, ed., Amsterdam: Elsevier, pp. 167–202.Google Scholar
  48. Nozaki, M. and Ishimura, Y. (1973), Microbial Iron Metabolism, J. B. Neilands, ed., New York: Academic Press.Google Scholar
  49. O’Brien, I. G. and Gibson, F. (1970), Biochem. Biophys. Acta, 215, 393.PubMedCrossRefGoogle Scholar
  50. Peisach, J., Blumberg, W. E., Lode, E. T., and Coon, M. J. (1971), J. Biol. Chem., 246, 5877.PubMedGoogle Scholar
  51. Perutz, M. F. (1970), Nature, 228, 726.PubMedCrossRefGoogle Scholar
  52. Pollack, J. R. and Neilands, J. B. (1970), Biochem. Biophys. Res. Commun., 38, 989.PubMedCrossRefGoogle Scholar
  53. Pollack, J. R., Ames, B. N., and Neilands, J. B. (1970), J. Bacterid., 104, 635.Google Scholar
  54. Robbins, E., Fant, J., and Norton, W. (1972), Proc. Nat. Acad. Sci. U. S., 69, 3708.CrossRefGoogle Scholar
  55. Rosenberg, A. H. and Getter, M. L. (1969), J. Mol. Biol., 46, 581.PubMedCrossRefGoogle Scholar
  56. Rosenberg, H. and Young, I. G. (1973), Microbial Iron Metabolism, J. B. Neilands, ed., New York: Academic Press.Google Scholar
  57. Sieker, L. C., Adman, E., and Jensen, L. H. (1972), Nature, 235, 4O.CrossRefGoogle Scholar
  58. Tsibris, J. C. M. and Woody, R. W. (1970), Coordination Chem. Rev., 5, 417.CrossRefGoogle Scholar
  59. Underwood, E. J. (1971), Trace Elements in Human and Animal Nutrition, New York: Academic Press.Google Scholar
  60. Zak, B., Baginski, E. S., Epstein, E., and Weiner, L. M. (1971), Clin. Toxicol., 4, 621.PubMedCrossRefGoogle Scholar
  61. Zalkin, A., Forrester, J. D., and Templeton, D. H. (1966), J. Am. Chem. Soc, 88, 1810.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • J. B. Neilands
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations