The Functional Physiology of Blood Platelets

  • G. V. R. Born
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 28)


The only established physiological function of platelets is in haemostasis. This function involves, first, adhesion of platelets to sites of injury in blood vessels and their aggregation to form haemostatic plugs; and secondly, the release from, platelets of material that accelerates the coagulation of plasma (platelet factor 3). The function depends on a mechanism by which platelet surfaces adhere and aggregate and on a mechanism for the release of particular constituents. The investigation of these mechanisms has produced a large literature; recent reviews include Physiology of blood platelets (1965); Platelets: their role in haemostasis and thrombosis (1967); and Platelet aggregation (in press). The following summarizes and discusses only that part of the information which is of particular interest to this Symposium. Most of the observations referred to were made with human platelets; there are considerable differences between species.


Platelet Aggregation Human Platelet Adenine Nucleotide Blood Platelet Adenosine Diphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baitgham A. D., The adhesiveness of leucocytes with special reference to the zeta potential. Ann. N. Y. Acad. Sci. 116, 945, 1964.Google Scholar
  2. 2.
    Behme O., Further studies on microtubules. A marginal bundle in human and rat thrombocytes. J. Ultrastruct. Res. 13, 469, 1965.CrossRefGoogle Scholar
  3. 3.
    Behme O., Incomplete microtubules observed in mammalian blood platelets during microtubule polymeri25ation. J. Cell. Biol. 34, 697, 1967.CrossRefGoogle Scholar
  4. 4.
    Bettex-Gallaed M., Luscher E. F., Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins. Adv. Protein Chem., 20, 1, 1965.CrossRefGoogle Scholar
  5. 5.
    Blomback B., Blomback M., Henschsit A., Hessel B., Iwaitage S., Woods K. R., N-terminal disulphide knot of human fibrinogen. Nature, Lond. 218, 130, 1968.CrossRefGoogle Scholar
  6. 6.
    Born G. V. R., Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, Lond. 194, 972, 1962.CrossRefGoogle Scholar
  7. 7.
    Born G. V. R., The effects of substances related to adenosine on blood vessels and on blood platelets. In Kreislaufnessungen, Fleckenstein A. and Klepzig H. (eds). München: Bañaschewski, 1963.Google Scholar
  8. 8.
    Born G. V. R., Strong inhibition by 2-chloro adenosine of the aggregation of blood platelets by adenosine diphosphate. Nature, Lond. 202, 95, 1964.CrossRefGoogle Scholar
  9. 9.
    Born G. V. R., Platelets in thrombogenesis; Mechanism and inhibition of platelet aggregation. Ann. R. Coll. Surg. Engl. 36, 200, 1965.PubMedGoogle Scholar
  10. 10.
    Born G. V. R., Inhibition of thrombogenesis by inhibition of platelet aggregation. In Pathogenesis and treatment of thromboembolic disorders: 159, Koller F., Duckert F., Streuli F. (eds). Schattauer, Stuttgart., 1966.Google Scholar
  11. 11.
    Born G. V. R., The effect of 5-hydroxytryptamine on the potassium exchange of human platelets. J. Physiol. 190, 273, 1967.PubMedGoogle Scholar
  12. 12.
    Born G. V. R., Possible mechanisms of platelet aggregation by AIDP and of its inhibition. Thromb. Diath. haemorrh. suppl. 26, 173, 1967PubMedGoogle Scholar
  13. 13.
    Born G. V. R., The platelet membrane and its functions. In Metabolism and membrane permeability of erythrocytes and thrombocytes. Thieme, Stuttgart, 1968.Google Scholar
  14. 14.
    Born G. V. R., Observations in the change in shape of blood platelets brought about by adenosine diphosphate. J. Physiol. 209, 487, 1970.PubMedGoogle Scholar
  15. 15.
    Born G. V. R., Brickitell J., The uptake of 5-hydroxytryptamine by blood platelets in the cold. J. Physiol. 147, 153, 1959.PubMedGoogle Scholar
  16. 16.
    Born G. V. R., Gross M. J., The aggregation of blood platelets. J. Physiol. 168, 178, 1963.PubMedGoogle Scholar
  17. 17.
    Born G. V. R., Huivie M. J., Effects of the numbers and sizes of platelet aggregates on the optical density of plasma. Nature, Lond. 215, 1027, 1967.CrossRefGoogle Scholar
  18. 18.
    Born G. V. R., Ingram G. I. C., Stagey R. S., The relationship between 5-hydroxytryptamine and adenosine triphosphate in blood platelets. Br. J. Pharmac. Chemother. 13, 62, 1958.Google Scholar
  19. 19.
    Born G. V. R., Mills D. G. B., Potentiation of the inhibitory effect of adenosine on platelet aggreg3. tion by drugs that prevent its uptalte. J. Physiol. 202, 41, 1969.Google Scholar
  20. 20.
    Bull B. S., Zucker M. B., Changes in platelet volume produced by temperature, metabolic inhibitors and aggregating agents. Proc. Soc. Exptl. Biol. Med. 120, 296, 1965.Google Scholar
  21. 21.
    Chaplain R. A., Abbot, R. H., White D. C. S., Indication for an allosteric effect of ADP on actomyosin gels and glycerinated fibres from insect fibrillar flight muscle. Biochem. Biophys. Res. Comm.. 21, 89, 1965.PubMedCrossRefGoogle Scholar
  22. 22.
    Cooley M. H., Cohen P., Potassium trajisport in human blood platelets. J, Lab. Clin. Med. 70, 69, 1967.Google Scholar
  23. 23.
    Davey M. G., Luscher E. G., Actions of some coagulant snalce venoms on blood platelets. Nature, Lond. 207, 730, 1965.CrossRefGoogle Scholar
  24. 24.
    Davies R. E., A molecular theory of muscle contraction; contraction-dependent contractions with hydrogen bond formation plus ATP-dependent extensions of part of the myosin-actin cross-bridges, nature, Lond. 199, 1068, 1963.CrossRefGoogle Scholar
  25. 25.
    Enger P. S., Bullock T. H., Physiological basis of slothfulness in the sloth. Hvalradets Skriften 48, 143, 1965.Google Scholar
  26. 26.
    Frelicrl J. S., Blood platelets: morphological studies on their properties and life cycle. Br. J. Haemat. 13, 595, 1967.CrossRefGoogle Scholar
  27. 27.
    Gless K., Cell physiology. 93, Saimders, London, 1962.Google Scholar
  28. 28.
    Gordon G., Phillips C. G., Slow and rapid components in a flexor muscle. Quart. J. exp. Physiol. 3o, 35, 1953.Google Scholar
  29. 29.
    Grette K., Studies on the mechanism of thrombin-cataJysed reactions in blood platelets. Acta Physiol. Scand. 56, suppl. 195.Google Scholar
  30. 30.
    Hampton J. R., Mitchell J. R. A., An estimate of the number of adenosine diphosphate binding sites on human platelets, nature, Lond. 211, 245, 1966.CrossRefGoogle Scholar
  31. 31.
    Holmsen H., Adenine Nucleotide Metabolism of Blood Platelets. Oslo. Universitetsforlaget., 1969.Google Scholar
  32. 32.
    Lehninger A. L., The Mitochondrion. New York W. A. Benjamin, p. 182, 1964.Google Scholar
  33. 33.
    Macmillait D. C., Secondary clumping effect in human citrated platelet-rich plasma produced by adenosine diphosphate and adrenaline. Nature, Lond. 211, 140, 1966.CrossRefGoogle Scholar
  34. 34.
    Magmilm D. C., Oliver M. F., The initial changes in platelet morphology following the addition of adenosine diphosphate. J. Atheroscler. Res. 5, 440, 1965.CrossRefGoogle Scholar
  35. 35.
    Madoff. M. A., Ebbe S., Baldini M., Sialic acid of human blood platelets. J. Clin. Invest. 43, 870, 1964.PubMedCrossRefGoogle Scholar
  36. 36.
    Maguire M., Michal F., Powerful new aggregator of blood platelets-2-chloroadenosine-5’-diphosphate. Nature, Lond. 217, 571, 1968.CrossRefGoogle Scholar
  37. 37.
    Mannucci P. M., Sharp A. A., Platelet Voliame and shape in relation to aggregation and adhesion. Brit. J. Haematol. 13, 604, 1967.CrossRefGoogle Scholar
  38. 38.
    Marcus A. J., Bradlow B. A., Sapier L. B., Ullman H. L., Biochemical and physiological properties of isolated platelet membranes. Thromb. Diath. haemorrh. suppl. 26, 43, 1967.PubMedGoogle Scholar
  39. 39.
    Mills D. C. B., Robb I. A., Roberts G. C. K., The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J. Physiol. 195, 715, 1968.PubMedGoogle Scholar
  40. 40.
    Nakao K, Angrist A. A., Membrane surface specialisation of blood platelets and me megakaryocyte. Nature, Lond. 217, 960, 1968.CrossRefGoogle Scholar
  41. 41.
    O’brien J. R., Heywood J. B., Effects of aggregating agents and their inhibitors on the mean platelet shape. J. Clin. Path. 19, 148, 1966.PubMedCrossRefGoogle Scholar
  42. 42.
    Paton W. D. M., A theory of drug action based on the rate of drug-receptor combination. Proc. Roy. Soc. B I54, 21, 1961.CrossRefGoogle Scholar
  43. 43.
    Pletscher A., Da Prada M., Tranzer J. P., Transfer and storage of biogenic monamines in subcellular organelles of blood platelets. Progress in Brain Res. 31, 47, 1969.CrossRefGoogle Scholar
  44. 44.
    Pringle J. W. S., Mechano-chemical transformation in striated muscle. In Aspects of Cell Motility. Cambridge University Press, p. 67, 1968.Google Scholar
  45. 45.
    Robinson G. A., Arnold A., Hartmam R. C., Divergent effects of epinephrine and prostaglandin E1 on the level of cyclic AMP in human blood platelets. Pharmacol. Res. Commun. 1, 325, 1969.CrossRefGoogle Scholar
  46. 46.
    Rozenberg M. C., Holmsen H., Adenine nucleotide metabolism of blood platelets. II. Uptake of adenosine and inhibition of ADP-induced platelet aggregation. Biochim. Biophys. Acta (Amst.) 155, 342, 1968.Google Scholar
  47. 47.
    Salzman E. W., Chambers D. A., Neri L. L., Possible mechanism of aggregation of blood platelets by adenosine diphosphate. Nature, Lond. 210, 167, 1966.CrossRefGoogle Scholar
  48. 48.
    Sattin A., Rall T. VI., The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’, 5’-phosphate content of guinea pig cerebral cortex slices. Molec. Pharmacol. 6, 13, 1970.Google Scholar
  49. 49.
    Schulz H., Electron microscopy of blood platelets and thrombosis. Springer, New York, 1968.Google Scholar
  50. 50.
    Seaman G. V. F., Surface potential and platelet aggregation. Thromb. Diath. haemorrh. suppl. 26, 53, 1967.PubMedGoogle Scholar
  51. 51.
    Setna S. A., Rosskthal R. L., Intermediate stages in platelet alterations during coagulation. Acta haemat. (Basel) 191, 209, 1958.CrossRefGoogle Scholar
  52. 52.
    Silver M. D., Cytoplasmic microtubules in rabbit platelets. Z. Zellforsch. Abt. Histochem. 68, 474, 1965.CrossRefGoogle Scholar
  53. 53.
    Skoza L., Zucker M. B., Jerushalmy Z., Graitt R., Kinetic studies of platelet aggregation induced by adenosine diphosphate and its inhibition by chelating agents, gaanidino compounds, and adenosine. Thromb. Diath. haemorrh. 18, 713, 1967.PubMedGoogle Scholar
  54. 54.
    Stoeckenius W., The molecular study of lipid-water systems and cell membrane model studies with the electron microscope. In The interpretation of ultra-structure: 349f Harris R. J. C. (ed.). Academic Press, Uew York, 1962.Google Scholar
  55. 55.
    Szent-Gyorgyi A. G., The role of actin-myosin interaction in contraction. In Aspects of Cell Motility. London and Cambridge. Cambridge University Press, p. 17, 1968.Google Scholar
  56. 56.
    Toscantins L. M., Historical notes on blood platelets. Blood 3, 1073, 1948.Google Scholar
  57. 57.
    Tranzer J. P., Baumgartner H. R., Pilling gaps in the vascular endothelium with blood platelets, nature, Lond. 216, 1126, 1967.CrossRefGoogle Scholar
  58. 58.
    Voth D., Schäfer A., Vergleichende photometrische tind elektronen mikroskopische ühtersuchungen an isolierten Rattenhim-Mitochondrien und Mikrosomen in vitro unter Bedingungen der osmotischen Schwellung und ATP induzierten Kontraktion, Brain Res. 10, 322, 1968.PubMedCrossRefGoogle Scholar
  59. 59.
    White J. G., Krivit W., An ultraBtructural basis for the shape changes induced in platelets by chilling. Blood 30, 625, 1967.PubMedGoogle Scholar
  60. 60.
    Wolfe W. M., Shulmau N. R., Adenylcyclase activity in human platelets. Biochem. Biophys. Res. Commun. 351 265, 1969.CrossRefGoogle Scholar
  61. 61.
    Yamada E., The fine structure of the megakaryocyte in the mouse spleen. Acta Anat. 29, 267, 1957.PubMedCrossRefGoogle Scholar
  62. 62.
    Zielte P. D., Greenough, III, W. B., Adenyl cyclase in human platelets: activity and responsiveness. Biochem. Biophys. Res. Commun. 35. 426, 1969.Google Scholar
  63. 63.
    Zucker M. B., Borrelli J., Reversible alterations in platelet morphology produced by anti-coagulants and by cold. Blood 9, 602, 1954.PubMedGoogle Scholar
  64. 64.
    Zucker M. B., Zaccardi J. B., Platelet shape change induced by adenosine diphosphate and prevented by adenosine monophosphate. Fed. Proc. 23, 299, 1964.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • G. V. R. Born
    • 1
  1. 1.Department of PharmacologyRoyal College of Surgeons of EnglandLondonEngland

Personalised recommendations