Skip to main content

Hypothalamic Catecholamines and Adrenergic Innervation of Hypothalamic Blood Vessels. Potential Role in Shock

  • Chapter
Neurohumoral and Metabolic Aspects of Injury

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 33))

Abstract

Previous studies by a number of investigators have established that the hypothalamus contains the highest concentration of norepinephrine (NE) among all regions of the brain (3,4,12,13,14, 24,26). This appears to be true of all species that have been studied. Results from our own studies in a number of laboratory species are shown in Table 1. We have also made extensive studies on the distribution of NE in various regions of the brain in the cat and squirrel monkey. These results are summarized in Table 2 and indicate that there are no striking differences in this respect between the feline and primate. The results obtained in the cat agree with previous findings (3, 18). Of all the tissues examined (Table 2) the hypothalamus had the highest concentration of norepinephrine (NE).

These studies were supported by a Themis Research Project Grant from the Department of the Navy and by USPHS NIH Grants HE 13008 and NB 08664.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariden, N.E., Dahlstrom, A., Fuxe, K., Olson, L. & Ungerstedt, U. (1966) Experientia 22:44.

    Article  Google Scholar 

  2. Angelakos, E. T., Irvin, J.D. & King, M.P. (1970) Fed. Proc. 29:416A.

    Google Scholar 

  3. Bertler, A. & Rosengren, E. (1959) Acta physiol. Scand. 47:350.

    Google Scholar 

  4. Carlsson, A. (1959) Pharm. Rev., 11:490.

    Google Scholar 

  5. Carlsson, A., Falck, B. & Hillarp, N-A. (1962) Acta physiol. Scando 56: suppl. 196.

    Google Scholar 

  6. Dahlstrom, A. & Fuxe, K. (1965) Acta physiol. Scand. 64: Suppl. 247.

    Google Scholar 

  7. D’Alecy, L.G. & Feiglo E.O. (1970) Fed. Proc. 29:520A.

    Google Scholar 

  8. Dollison, J. R., Bloor, B.M., Figueroa, A.F. & Loar, B.A. (1969) Surg. Forum 20:416.

    Google Scholar 

  9. Falck, B., Hillarp, N-Ã…., Thieme, G. & Torp, A. (1962) J. Histochemo Cytochem. 10:348.

    Article  Google Scholar 

  10. Falck, B., Mchedlishvili, G.I. & Owman, Ch. (1965) Acta Pharmacol. Toxicol. 23:133.

    Article  Google Scholar 

  11. Falck, B., Nielsen, K.C. & Owman, C. (1968) Scando J. Clin. Labo Invest. Suppl. 102: Sect VI, B.

    Google Scholar 

  12. Faxe, K. & Hokfelt, T. (1970) Central monoaminergic systems and hypothalamic function. In: The Hypothalamus, ed.: L. Martini, M. Motta and F. Fraschini. New York, Academic, 123.

    Google Scholar 

  13. Fuxe, K., Hokfelt, T. & Uhgerstedt, U. (1970) Morphological and functional aspects of central monoamine neurons. In: International Review of Neurobiology, ed.: C.C. Pfeiffer and J.R. Smythies. New York, Academic, 93.

    Google Scholar 

  14. Glowinski, J., Axelrod, J. & Iversen, L.L. (1966) J. Pharmacol. exptl. Therap. 153:30.

    Google Scholar 

  15. Hillarp, N-Ã…, Fuxe, K. & Dahlstrom, A. (1966). Pharmacol. Rev. 18:727.

    Google Scholar 

  16. Mitchell, G.A.G., (1956) Cardiovascular innervation. London: E. and S. Livingstone Ltd.

    Google Scholar 

  17. Nelson, E. & Renneis, M. (1970) Innervation of intracranial arteries. Brain 93:475.

    Article  Google Scholar 

  18. Reis, D.J. & Wurtman, R.J. (1968) Diurnal changes in brain norepinephrine. Life Sciences 7:91.

    Article  Google Scholar 

  19. Rosendorff, C. & Cranston, W.I. (1971) Circulation Res. 28:492.

    Article  Google Scholar 

  20. Ross, G. The regional circulation (1971) Ann. Rev. Physiol. 33:445.

    Article  Google Scholar 

  21. Schmidt, CF. (1934) The intrinsic regulation of the circulation in the hypothalamus of the cat. Am. J. Physiol. 110:137.

    Google Scholar 

  22. Schmidt, C.F. (1950) The cerebral circulation in health and disease. Springfield, Illinois: Charles C. Thomas.

    Google Scholar 

  23. Sokoloff, L. (1959) Pharmacol. Rev. 11:1.

    Google Scholar 

  24. Vogt J M. (1954) J. Physiol. 123:451.

    Google Scholar 

  25. Vogt, M. (1957) Brit. Med. Bull. 13:166.

    Google Scholar 

  26. Vogt, M. (1959) Pharmacol. Rev. 11:483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Angelakos, E.T., King, M.P., Carballo, L. (1973). Hypothalamic Catecholamines and Adrenergic Innervation of Hypothalamic Blood Vessels. Potential Role in Shock. In: Kovách, A.G.B., Stoner, H.B., Spitzer, J.J. (eds) Neurohumoral and Metabolic Aspects of Injury. Advances in Experimental Medicine and Biology, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3228-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3228-2_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3230-5

  • Online ISBN: 978-1-4684-3228-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics