Advertisement

Time Course of Metabolite and Enzyme Changes in Hypoxic Conditions

  • G. Horpácsy
  • T. Barankay
  • K. Tánoky
  • S. Nagy
  • G. Petri
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 33)

Abstract

Tissue hypoxia of shock is often characterized by metabolites of anaerobic glycolysis released into the blood plasma auch as lactic and pyruvic acids and by the so-called “excess lactate” of Huckabee. (Huckabee 1958; Rosenberg et al., 1961; Peretz et al., 1965). Release of lysosomal and cytoplasmic enzymes into the circulation also occurs in hemorrhagic shock. We have shown earlier that their plasma level correlates well with the severity of shock (Gergely et al., 1970; Barankay and Petri 1969). According to the investigations of Schmidt during hypoxic damage of isolated, perfused organs a significant release of enzymes and metabolites takes place (Schimdt et al., 1966). These substances appear in the perfusate after the lapse of a certain period of time depending on their intracellular localization, binding, etc.

Keywords

Lactic Acid Acid Phosphatase Hypoxic Condition Lysosomal Enzyme Hemorrhagic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barankay, T., (1969) Kisérl.Orvostud. 21:64–6.Google Scholar
  2. Barankay, T. & Petri, G. (1969) Kisérl. Orvostud. 21:18.Google Scholar
  3. Beisang, A.A., Graham, E.F., Lillehei, R.C., Dietzman, R.H. & Carter, J.E., (1969) Transplantations Proc. 1:862.Google Scholar
  4. Belzer, F.O., Ashby, S.B. & Donnes, G.L. (1968) Surg. Forum 19:205.Google Scholar
  5. Gergely, M., Horpácsy, G., Barankay, T. & Hézsai, K. (1970) Kisérl. Orvostud. 22:488.Google Scholar
  6. Greenberg, L.J. (1966) Ann. Biochem. 14:265.CrossRefGoogle Scholar
  7. Huckabee, W.E. (1958) J. clin. Invest. 37:244.CrossRefGoogle Scholar
  8. Loomis, M.E. (1961) J. lab. clin. Med. 57:966.Google Scholar
  9. Peretz, D.I., Scott, H.M., Duff, J., Dossetor, J.B., McLean, L.D. & McGregor, M. (1965) Ann. N.Y. Acad.Sci. 119:1133.CrossRefGoogle Scholar
  10. Petri, G. & Horpácsy, G. (1971) Orvos és Techn. 9:19.Google Scholar
  11. Roeckerbie, R.A. & Rasmussen, K.L. (1967) Clin. chim. Acta 18:183.CrossRefGoogle Scholar
  12. Rosenberg, J.C., Lillehei, R.C., Longerbeam, J. & Zimmerman, B. (1961) Ann. Surg. 154:611.CrossRefGoogle Scholar
  13. Schmidt, E., Schmidt, F.W., Herfarth, C., Opitz, K. & Vogell, W. (1966) Enzymol. biol. Clin. 7:185.Google Scholar
  14. Tárnoky, K. (1970) Kisárl. Orvostud. 22:197.Google Scholar
  15. Tárnoky, K. (1969) Kisérl. Orvostud. 21:650.Google Scholar
  16. Vahlensiek, W. (1969) Ther.Berichte (Bayer) 19, 650.Google Scholar
  17. Vesell, E.S., Feldmann, M.P. & Frank, E. (1959) Proc.Soc.exp. Biol.Med. 101, 644.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • G. Horpácsy
    • 1
  • T. Barankay
    • 1
  • K. Tánoky
    • 1
  • S. Nagy
    • 1
  • G. Petri
    • 1
  1. 1.Institute of Experimental SurgeryUniversity Medical School of SzegedSzegedHungary

Personalised recommendations