Advertisement

Brain and Liver Intracellular Compartmental Redox States in Hypoxia, Hypocapnia and Hypercapnia

  • A. T. MillerJr.
  • Francis M. H. Lai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 33)

Abstract

This paper gives an account of our experiences with the substrate ratio technique for calculating cytoplasmic and mitochondrial NAD+/NADH2 changes in brain and liver in several metabolic states. The NAD redox system is especially suitable for studies on oxygen availability since it occurs in both the cytoplasm and the mitochondria; this makes it possible to distinguish changes in the NAD+/NADH2 ratio in the two compartments. NAD exists in cells in both free and bound forms. Krebs (1967) and Krebs and Veech (1969) recommend that, on thermodynamic grounds, only the free nucleotide concentrations should be used in calculating redox ratios.

Keywords

Glutamate Dehydrogenase Intracellular Acidity Substrate Ratio Redox Ratio NADH2 Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bücher, Th. & Klingenberg, M. (1958) Angew. Chenu 70, 552.CrossRefGoogle Scholar
  2. Chance, B., Schoener, B. & Schindler, F. The intracellular oxidation-reduction state. In: Oxygen in the Animal Organism, edited by F. Dickens and E. Neil. New York, MacMillan, 1964, p. 367.CrossRefGoogle Scholar
  3. Granholm, L., Lukjanova, L. & Siesjö, B.K. (1968) Acta physiol. scand. 72, 533.CrossRefGoogle Scholar
  4. Holzer, H., Schultz, G. & Lynen, F. (1956) Biochem.Z. 328, 252.Google Scholar
  5. Krebs, H.A. (1967) Adv. Enzyme Reg. 5, 409.CrossRefGoogle Scholar
  6. Krebs, H.A. & Veech, R.L. (1969) FEBS Symposium, 17, 101.Google Scholar
  7. Krebs, H.A., & Veech, R.L. Pyridine nucleotide interrelations, In: The Energy Level and Metabolic Control in Mitochondria, edited by S. Papa, J.M. Tager, E. Quagliariello and E.C. Slater. Bari, Adriatica Editrice, 1969, p. 329.Google Scholar
  8. Miller, A.T., Jr., Curtin, K.E., Shen, A.L. & Suiter, C.K. (1970) Am. J. Physiol. 219, 798.Google Scholar
  9. Patel, A.J. & Balazs, R. (1970) J. Neurochem. 17, 955.CrossRefGoogle Scholar
  10. Siesjö, B.K. & Ponten, U. (1966) Ann. N.Y. Acad.Sci. 133, 78.CrossRefGoogle Scholar
  11. Siesjö, B.K. & Nilsson, L. (1971) Scand. J. Clin. Lab. Invest. 27, 83.CrossRefGoogle Scholar
  12. Van den Berg, C.J., Krzalic, L.J., Mela, P. & Waelsch, H. (1969) Biochem.J. 113, 281.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • A. T. MillerJr.
    • 1
  • Francis M. H. Lai
    • 1
  1. 1.Department of Physiology, School of MedicineUniversity of North CarolinaChapel HillUSA

Personalised recommendations