Advertisement

Insulin Secretion during Hemorrhagic Shock

  • M. Vigaš
  • R. E. Haist
  • F. Bauer
  • W. R. Drucker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 33)

Abstract

Hemorrhage as a stress stimulus activates the endocrine system which results in an increase of circulating catecholamines (7), glucocorticoids and ACTH (8). These hormones induce various metabolic changes including hyperglycemia which regularly appears in the early period of hemorrhagic shock in well-fed animals (l7), being predominantly mediated by catecholamines, whereas glucocorticoids contribute to its intensity and persistence (9). The hyperglycemia acts as a physiological stimulus for insulin secretion, but in the presence of an increased blood catecholamine level the secretory response of the islets is blocked (1,14). The activation of the endocrine system with resulting metabolic changes may increase the demand for insulin and its absolute or relative deficiency may seriously jeopardize survival in shock.

Keywords

Insulin Secretion Beta Cell Insulin Level Arterial Blood Pressure Hemorrhagic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altszuler, N., Steel, R., Rathged, I. & De Bodo, R.C. (1967) Am. J. Physiol. 212:677.Google Scholar
  2. 2.
    Blair, O.M., Stenger, R.J., Hopkins, R.W. & Simeone, F.A. (1968) Lab. Invest. 18:172.Google Scholar
  3. 3.
    Cerchio, G.M., Moss, G.S., Popovich, P.A., Butler, E. & Siegel, D.C. (1971) Endocrinology 88:138.CrossRefGoogle Scholar
  4. 4.
    Drucker, W.R., Schlatter, J. & Drucker, R.P. (1968) Surgery 64:75.Google Scholar
  5. 5.
    Engel, F.L. (1952) Ann. N.Y. Acad. Sci. 55:381.CrossRefGoogle Scholar
  6. 6.
    Halmagyi, D.F.J., Gillett, D.J., Lazarus, L. & Young, J.D. J. Trauma 6:623.Google Scholar
  7. 7.
    Huma, D.M. Federation Proc. 20; suppl. 9, 87.Google Scholar
  8. 8.
    Kužela, L. & Mikulaj, L. (1966) Klin. Med. 21:298.Google Scholar
  9. 9.
    Levenson, S.M., Einheber, A. & Malm, O.J. Federation Proc. 20: suppl. 9, 99.Google Scholar
  10. 10.
    Mayhew, D.A., Wright, P.H. & Ashmore, J. Pharmacol. Rev. 21:183.Google Scholar
  11. 11.
    McCormick, J.R., Sonksen, P.H., Soeldner, J.S. & Egdahl, R.H. (1969) Surgery 66:175.Google Scholar
  12. 12.
    Moffat, J.G., King, J.A.C. & Drucker, W.R. (1968) Surgical Forum 14:5.Google Scholar
  13. 13.
    Oshawa, N., Kuzuya, T., Tanioka, T., Kanazawa, Y., Ibayasha, H. & Nakao, K. Endocrinology 81:925.Google Scholar
  14. 14.
    Porte, D., Graber, A.L., Kuzuya, T. & Williams, R.H. (1966) J. Clin. Invest. 45:228.CrossRefGoogle Scholar
  15. 15.
    Rappaport, A.M., Davidson, J.K., Kawamura, T., Lin, B.J., Ohira, S., Ziegler, M., Coddling, J. A., Henderson, J. & Haist, R.E. (1970) Abstract of papers, Regional Congress of Int. Union of Physiol. Sci., Brasov, Romania, pp.436.Google Scholar
  16. 16.
    Rieser, P. (1967) Insulin, membranes and metabolism. The Williams and Wilkins Co., Baltimore, p. 54.Google Scholar
  17. 17.
    Seligman, A.M., Frank, H.A., Alexander, B. & Fine, J. (1947) J. Clin. Invest. 26:536.CrossRefGoogle Scholar
  18. 18.
    Yalow, R.S., & Berson, S.A. (1960) J. Clin. Invest. 39:1157.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • M. Vigaš
    • 1
    • 2
  • R. E. Haist
    • 1
    • 2
  • F. Bauer
    • 1
    • 2
  • W. R. Drucker
    • 1
    • 2
  1. 1.Institute of Experimental EndocrinologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Departments of Physiology and SurgeryUniversity of TorontoOntarioCanada

Personalised recommendations