Influence of Histamene on Transport of Fluid and Plasma Proteins into Lymph

  • Eugene M. Renkin
  • Reginald D. Carter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 33)


It has been proposed that materials are transported across capillary walls by diffusion and ultrafiltration through small pores of 35–45 Å radius, a few large pores or “leaks” over 200 Å in radius and by pinocytosis in vesicles of 250 Å internal diameter (Landis & Pappenheimer, 1963; Mayerson, 1963; Winne, 1965). The small pores account for the exchange of water and low MW solutes, and contribute to the transport of larger molecules up to the size of serum albumin, effective radius 35.5 Å. Larger pores or vesicles are required for the transport into lymph of molecules larger than this. Fig. 1 illustrates the contribution of the small pore and large pore or vesicular
mechanisms to the transport of serum albumin and ofdextran molecules of graded molecular radii from 24 to 130 Å in the dog paw (Garlick & Renkin, 1971). The ordinate represents permeability-surface area product for the pore systems, or volume clearance for the vesicles.


Capillary Wall Lymph Flow Gamma Globulin Vesicular Transport Molecular Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis, B.J. (1964) Ann. N.Y. Acad, Sci. 121:404.CrossRefGoogle Scholar
  2. Diana, J.N., Long, S & Yao, H. (1971) Fed. Proc. 30:661 (abstract).Google Scholar
  3. Garlick, D.G. & Renkin, E.M. (1970) Am. J. Physiol. 219:1595.Google Scholar
  4. Granath, K.A. & Kvist, B.E. (1967) J. Ghromatog. 28:69.CrossRefGoogle Scholar
  5. Johnson, J.A. (1966) Am. J. Physiol. 211:1261.Google Scholar
  6. Landis, E.M. & Pappenheimer, J.R. (1963). In Handbook of Physiology, Sect. 2, Circulation. Amer. Physiol. Soc. Washington, D.C. Vol. II, Chapt. 29, p.961.Google Scholar
  7. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) J. Biol. Chem. 193:265.Google Scholar
  8. Majno, G. & Palade, G.E. (l96l) J. Biophys, Biochem. Cytol.11:571.CrossRefGoogle Scholar
  9. Mayerson, H.S. (1963) In Handbook of Physiology, Sect. 2, Circulation. Amer. Physiol. Soc, Washington, D.C., Vol. II, Chapt. 30, p.1035.Google Scholar
  10. Pappenheimer, J.R., Renkin, E.M. & Borrero, L.M. (1951) Am. J. Physiol. 167:13.Google Scholar
  11. Renkin, E.M. (1964) Physiologist 7:13.Google Scholar
  12. Renkin, E.M. & Garlick, D.G. (1970) Microvasc. Res. 2:392.CrossRefGoogle Scholar
  13. Roe, J.H. (1954) J. Biol. Chem. 208:889.Google Scholar
  14. Rusznyak, I., Foldi, M. & Szabo, G. (1967) Lymphatics and Lymph Circulation, Physiology and Pathology, 2nd ed. Oxford: Pergamon Press, p.303 ff.Google Scholar
  15. Winne, D. (1965) Pflügers Arch. 283:119.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Eugene M. Renkin
    • 1
  • Reginald D. Carter
    • 1
  1. 1.Department of Physiology and PharmacologyDuke University Medical CenterDurhamUSA

Personalised recommendations